Citation: CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao. Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1310-1317. shu

Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis

  • Corresponding author: CHU Mo, cm@cumtb.edu.cn
  • Received Date: 15 April 2016
    Revised Date: 7 July 2016

Figures(10)

  • The variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis was studied. Spent shale samples obtained by retorting oil shale at 300-550℃ were subjected to sequential Soxhlet extraction-acid pickling-Soxhlet extraction procedures to obtain free bitumen (FB), bitumen bound with carbonates (BB-1) and bitumen bound with silicates (BB-2). The bitumen samples were characterized by liquid chromatography fractionation, FT-IR and GC-MS. The results show that the total bitumen yield first increases and then decreases with increasing temperature from 300 to 550℃, and reached the maximum value of 4.63% at 400℃. Especially, the intense vaporization and decomposition of bitumen occurring at 400-450℃ causes a dramatic decrease in bitumen yield from 4.63% to 0.98%. Decarboxylation of aliphatic acids, decomposition of esters and cracking of long-chain alkanes take place at 350-450℃, which decreases the contents of acids and esters in FB and shortens the chain length of alkanes. The carboxylic acids derived from kerogen pyrolysis can react with carbonates to form carboxylates, leading to a high amount of aliphatic acids in 400℃ BB-1 (78.82%). The contents of oxygenated compounds (acids, esters and phenols) and alkanes of 400℃ BB-2 are 80.79% and 19.21%, respectively, due to the combination between oxygenated compounds and clay minerals, and the insertion of alkanes into the interlayer space of montmorillonite.
  • 加载中
    1. [1]

      LIU Zhao-jun, DONG Qing-shui, YE Song-qing, ZHU Jian-wei, GUO Wei, LI Dian-chao, LIU Rong, ZHANG Hai-long, DU Jiang-feng. The situation of oil shale resources in China[J]. J Jilin Univ (Earth Sci Ed), 2006,36(6):869-876.  

    2. [2]

      OGUNSOLA O I, HARTSTEIN A M, OGUNSOLA O. Oil Shale:A Solution to the Liquid Fuel Dilemma[M]. Washington D C:American Chemical Society, 2010:117.

    3. [3]

      ZIEGEL E R, GORMAN J W. Kinetic modeling with multiresponse data[J]. Technometrics, 1980,22(2):139-150. doi: 10.1080/00401706.1980.10486129

    4. [4]

      LI Shu-yuan, QIAN Jia-lin, QIN Kuang-zong, ZHU Ya-jie. Study on the kinetics of oil shale pyrolysis with bitumen as an intermediate product[J]. J Fuel Chem Technol, 1987,15(2):118-123.  

    5. [5]

      WEN C S, KOBYLINSKI T P. Low-temperature oil shale conversion[J]. Fuel, 1983,62(11):1269-1273. doi: 10.1016/S0016-2361(83)80008-8

    6. [6]

      MIKNIS F P, TURNER T F, BERDAN G L, CONN P J. Formation of soluble products from thermal decomposition of Colorado and Kentucky oil shales[J]. Energy Fuels, 1987,1(6):477-483. doi: 10.1021/ef00006a004

    7. [7]

      LI Q Y, HAN X X, LIU Q Q, JIANG X M. Thermal decomposition of Huadian oil shale. Part I. Critical organic intermediates[J]. Fuel, 2014,121:109-116. doi: 10.1016/j.fuel.2013.12.046

    8. [8]

      TANNENBAUM E, HUIZINGA B, KAPLAN I R. Role of minerals in thermal alteration of organic matter-Ⅱ:A material balance[J]. AAPG Bull, 1986,70(9):1156-1165.  

    9. [9]

      HUIZINGA B, TANNENBAUM E, KAPLAN I R. The role of minerals in thermal alteration of organic matter-Ⅲ. Generation of bitumen in laboratory experiments[J]. Org Geochem, 1987,11(6):591-604. doi: 10.1016/0146-6380(87)90012-X

    10. [10]

      RAZVIGOROVA M, BUDINOVA T, TSYNTSARSKI B, PETROVA B, EKINCI E, ATAKUL H. The composition of acids in bitumen and in products from saponification of kerogen:Investigation of their role as connecting kerogen and mineral matrix[J]. Int J Coal Geol, 2008,76(3):243-249. doi: 10.1016/j.coal.2008.07.011

    11. [11]

      HUTTON A, BHARATI S, ROBL T. Chemical and petrographic classification of kerogen/macerals[J]. Energy Fuels, 1994(8):1478-1488.  

    12. [12]

      CHANG Zhi-bing, CHU Mo, ZHANG Chao, WANG Wen-juan, QU Yang. Influence of particle size on oil yield from pyrolysis of oil shale[J]. J Fuel Chem Technol, 2015,43(6):663-668.  

    13. [13]

      BAI Jing-ru, PAN Shuo, LIN Wei-sheng, JIA Chun-xia, WANG Qing. Influence of hydrochloric acid pickling on dissolution behaviors of small molecules in oil shale[J]. J Fuel Chem Technol, 2014,42(12):1409-1415.  

    14. [14]

      WANG Qing, HUANG Zong-yue, CHI Ming-shu, SHI Ju-xin, WANG Zhi-chao, SUI Yi. Chemical structure analysis of oil shale kerogen[J]. CIESC J, 2015,66(5):1861-1866.  

    15. [15]

      ALSTADT K N, KATTI D R, KATTI K S. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale[J]. Spectrochim Acta A, 2012,89:105-113. doi: 10.1016/j.saa.2011.10.078

    16. [16]

      WANG Qing, CUI Da, CHI Ming-shu, ZHANG Hong-xi, XU Xiang-cheng. Influence of final retorting temperature on composition and property of Huadian shale oil[J]. CIESC J, 2015,66(7):2670-2677.  

    17. [17]

      PATTERSON J H. A review of the effects of minerals in processing of Australian oil shales[J]. Fuel, 1994,73(3):321-327. doi: 10.1016/0016-2361(94)90082-5

    18. [18]

      BALLICE L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale[J]. Fuel Process Technol, 2005,86(6):673-690. doi: 10.1016/j.fuproc.2004.07.003

    19. [19]

      WANG Qing, LIU Bin, LIU Hong-peng, BAI Jing-ru, XIAO Guan-hua. Analysis of mineral behavior during pyrolysis of oil shale[J]. J Fuel Chem Technol, 2013,41(2):163-168.  

    20. [20]

      LI Shu-yuan, LIN Shi-jing, GUO Shao-hui, LIU Luo-fu. Catalytic effects of minerals on hydrocarbon generation in kerogen degradation[J]. J China Univ Pet (Nat Sci Ed), 2002,26(1):69-71.  

    21. [21]

      ZHANG Zhi-huan, GAO Xian-zhi, FANG Chao-liang. Effect of clay minerals on kerogen pyrolysis and the reaction mechanism[J]. J China Univ Pet (Nat Sci Ed), 1995,19(5):11-17.  

    22. [22]

      SISKIN M, BRONS G, PAYACK JR J F. Disruption of kerogen-mineral interactions in oil shales[J]. Energy Fuels, 1987,1(3):248-252. doi: 10.1021/ef00003a004

  • 加载中
    1. [1]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    6. [6]

      Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026

    7. [7]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    8. [8]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    9. [9]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Dongcheng Liu Xiaokun Li Huancheng Hu Cunji Gao Qiong Hu Shuting Li Yuning Liang . Chemistry Experimental Teaching Reform for the Promotion of Training Exceptional Chemistry Teachers for Normal Schools. University Chemistry, 2024, 39(8): 1-6. doi: 10.3866/PKU.DXHX202311072

    12. [12]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    13. [13]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    14. [14]

      Qin Kuang Lansun Zheng Yaxian Zhu . Overall Design of the Inorganic Chemistry Course for the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 14-21. doi: 10.12461/PKU.DXHX202408071

    15. [15]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    16. [16]

      Shouyun Yu Wenwei Zhang Shunliu Deng Weihong Li Yanping Ren Yijun Li Yuan Chun Houjin Li Li Ma Faqiong Zhao Xiuqiong Zeng Shuyong Zhang Changgong Meng Jianrong Zhang . Reflection and Practice on the Construction of Fundamental Chemistry Experiments under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 52-57. doi: 10.12461/PKU.DXHX202408009

    17. [17]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    18. [18]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    19. [19]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    20. [20]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

Metrics
  • PDF Downloads(1)
  • Abstract views(712)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return