Citation: Liu Yuke, Zhou Li, Sun Jing, Zhou Mingdong. Recent Advances in N-Heterocyclic Carbene Catalyzed Carboxylation of CO2[J]. Chemistry, ;2020, 83(8): 690-697. shu

Recent Advances in N-Heterocyclic Carbene Catalyzed Carboxylation of CO2

Figures(4)

  • Carbon dioxide (CO2) is a kind of abundant renewable resources, and researchers have been working to develop a catalytic system that can efficiently convert it. N-heterocyclic carbene is a very important type of catalyst in organic chemistry. The efficient conversion of CO2 by the use of N-heterocyclic carbene-transition metal complexes has attracted extensive attention. In this paper, based on the classification of N-heterocyclic carben-transition metal complexes, the progress in N-heterocyclic carben-transition metal complexes catalyzed carboxylation reaction of CO2 in recent years is summarized.
  • 加载中
    1. [1]

    2. [2]

      (a) Chakraborty D, Shekhar P, Singh H D, et al. Chem. Asian J., 2019, 14(24): 4767~4773; (b) Zhong H, Su Y, Chen X, et al. ChemSusChem, 2017, 10(24): 4855~4863; (c) Wang S, Song K, Zhang C, et al. J. Mater. Chem. A, 2017, 5: 1509~1515; (d) Nandi S, Collins S, Chakraborty D, et al. J. Am. Chem. Soc., 2017, 139(5): 1734~1737; (e) Zheng W F, Zhang W, Huang J, et al. Org. Chem. Front., 2018, 5: 1900~1904. 

    3. [3]

      (a) Bhanja P, Modak A, Bhaumik A. ChemCatChem, 2019, 11(1): 244~257; (b) Sakakura T, Choi J C, Yasuda H. Chem. Rev., 2007, 107(6): 2365~2387; (c) Riduan S N, Zhang Y. Dalton Transac., 2010, 39(14): 3347~3357; (d) Tlili A, Blondiaux E, Frogneux X, et al. Green Chem., 2015, 17: 157~168; (e) Zhang L, Hou Z. Chem. Sci., 2013, 4: 3395~3403; (f) Cokoja M, Bruckmeier C, Rieger B, et al. Angew. Chem. Int. Ed., 2011, 50(37): 8510~8537. 

    4. [4]

      (a) Lapidus A L, Pirozhkov S D, Koryakin A A. Russ. Chem. Bull., 1978, 27: 2513~2515; (b) Chiba K, Tagaya H, Miura S, et al. Chem. Lett., 1992, 21(6): 923~926; (c) Chiba K, Tagaya H, Karasu M, et al. Bull. Chem. Soc. Jpn., 1994, 67(2): 452~454; (d) Quirk R P, Yin J, Fetters L J, et al. Macromolecules, 1992, 25(8): 2262~2267. 

    5. [5]

      (a) Zhao Q, Meng G, Szostak M, et al. Chem. Rev., 2020, 120(4): 1981~2048; (b) Zhang L, Li Z, Takimoto M, et al. Chem. Rec., 2019, DOI: 10.1002/tcr.201900060. (c) 黄鸿泰, 李涛, 王家状, 等. 有机化学, 2019, 39(6): 1511~1521. 

    6. [6]

      (a) Deutsch C, Krause N, Lipshutz B H. Chem. Rev., 2008, 108(8): 2916~2927; (b) Evano G, Blanchard N, Toumi M. Chem. Rev., 2008, 108(8): 3054~3131. 

    7. [7]

      Shibasaki M, Kanai M. Chem. Rev., 2008, 108(8): 2853~ 2873. 

    8. [8]

      Ohishi T, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2008, 47(31): 5792~5795.

    9. [9]

      (a) Ohishi T, Nishiura M, Hou Z. Angew. Chem. Int. Ed., 2011, 50(35): 8114~8117; (b) Zhang L, Cheng J, Ohishi T, et al. Angew. Chem. Int. Ed., 2010, 49(46): 8670~8673. 

    10. [10]

      Zhang L, Hou Z. Pure Appl. Chem., 2012, 84(8): 1705~1712. 

    11. [11]

      Ohishi T, Nishiura M, Hou Z. Angew. Chem. Int. Ed., 2008, 47(31): 5792~5795. 

    12. [12]

      Dang L, Lin Z, Marder T B. Organometallics, 2010, 29(4): 917~927. 

    13. [13]

      Ohmiya H, Tanabe M, Sawamura M. Org. Lett., 2011, 13(5): 1086~1088. 

    14. [14]

      Ukai K, Aoki M, Takaya J, et al. J. Am. Chem. Soc., 2006, 128(27): 8706~8707. 

    15. [15]

      Ohishi T, Zhang L, Nishiura M, et al. Angew. Chem. Int. Ed., 2011, 50(35): 8114~8117. 

    16. [16]

      Zhang L, Cheng J, Carry B, et al. J. Am. Chem. Soc., 2012, 134(35): 14314~14317. 

    17. [17]

      Duong H A, Huleatt P B, Tan Q W, et al. Org. Lett., 2013, 15(15): 4034~4037. 

    18. [18]

      Butcher T W, McClain E J, Hamilton T G, et al. Org. Lett., 2016, 18(24): 6428~6431. 

    19. [19]

      Juhl M, Huang Y, Nielsen D U, et al. ACS Catal., 2017, 7(2): 1392~1396. 

    20. [20]

      Kuge K, Luo Y, Fujita Y, et al. Org. Lett., 2017, 19(4): 854~857. 

    21. [21]

      Takimoto M, Hou Z. Chem. Eur. J., 2013, 19(34): 11439~11445. 

    22. [22]

      Ueno A, Takimoto M, Nishiura M, et al. Chem. Asian J., 2015, 10(4): 1010~1016. 

    23. [23]

      Takimoto M, Gholap S S, Hou Z. Chem. Eur. J., 2015, 21(43): 15218~15223. 

    24. [24]

       

    25. [25]

      Wang S, Shao P, Chen C, et al. Org. Lett., 2015, 17(20): 5112~5115. 

    26. [26]

      Wu X F, Beller M. In Chemical Transformations of Carbon Dioxide, Springer, Cham. 2016, 1~60.

    27. [27]

      Zhang W Z, Li W J, Zhang X, et al. Org. Lett., 2010, 12(21): 4748~4751. 

    28. [28]

      Yu D, Zhang Y. PNAS, 2010, 107(47): 20184~20189. 

    29. [29]

      Yoo W J, Nguyen T V Q, Kobayashi S. Angew. Chem. Int. Ed., 2014, 53(38): 10213~10217. 

    30. [30]

      Boogaerts I I F, Fortman G C, Furst M R L, et al. Angew. Chem. Int. Ed., 2010, 49(46): 8674~8677. 

    31. [31]

      Inomata H, Ogata K, Fukuzawa S, et al. Org. Lett., 2012, 14(15): 3986~3989. 

    32. [32]

      Ishida N, Masuda Y, Uemoto S, et al. Chem. Eur. J., 2016, 22(19): 6524~6527. 

    33. [33]

      Yu D, Tan M X, Zhang Y. Adv. Synth. Catal., 2012, 354(6): 969~974. 

    34. [34]

    35. [35]

      Yamashita K, Hase S, Kayaki Y, et al. Org. Lett., 2015, 17(10): 2334~2337. 

    36. [36]

      (a) Sekine K, Sadamitsu Y, Yamada T. Org. Lett., 2015, 17(22): 5706~5709; (b) Fang G, Bi X. Silver Complexes in Organic Transformations, 2019: 661~722. 

    37. [37]

      Li S, Sun J, Zhang Z, et al. Dalton. Transac., 2016, 45: 10577~10584. 

    38. [38]

      Zhang Z Z, Mi R J, Guo F J, et al. J. Saudi Chem. Soc., 2017, 21(6): 685~690. 

    39. [39]

      Yuan Y, Chen C, Zeng C, et al. ChemCatChem, 2017, 9(5): 882~887. 

    40. [40]

      Boogaerts I I F, Nolan S P. J. Am. Chem. Soc., 2010, 132(26): 8858~8859. 

    41. [41]

      Hase S, Kayaki Y, Ikariya T. ACS Catal., 2015, 5(9): 5135~5140. 

    42. [42]

      Fujita K, Inoue K, Sato J, et al. Tetrahedron, 2016, 72(9): 1205~1212. 

    43. [43]

      Diccianni J B, Heitmann T, Diao T. J. Org. Chem., 2017, 82(13): 6895~6903. 

    44. [44]

      Cai Z, Li S, Gao Y, et al. Adv. Synth. Catal., 2018, 360(20): 4005~4011. 

  • 加载中
    1. [1]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    4. [4]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    13. [13]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(18)
  • Abstract views(864)
  • HTML views(210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return