Citation: ZHANG Le, LI Qiang, ZHAO Yue, QIN Yu-cai, GAO Xiong-hou, SONG Li-juan. Effect of Ce ion on adsorption and diffusion behavior of benzene in Y zeolite[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 84-92. shu

Effect of Ce ion on adsorption and diffusion behavior of benzene in Y zeolite

  • Corresponding author: SONG Li-juan, tianhuikele@126.com; lsong56@263.net
  • Received Date: 14 September 2016
    Revised Date: 3 November 2016

    Fund Project: National Natural Science Foundation of China 21376114

Figures(9)

  • The liquid ion exchange method was employed to prepare cerium (Ce) cation modified Y zeolite (CeY) with various amount of cerium using different types of Y zeolite (HY, USY and NaY) and characterized by X-ray fluorescence spectrometry (XRF), intelligent gravimetric analyzer (IGA) and a molecular simulation technology (Grand Canonical Monte Carlo simulation, GCMC). A novel calculation method of desorption index (DI) has also been proposed to study the influence of cerium cations on the processes of adsorption-desorption of hydrocarbon molecule (benzene) on the CeY zeolites. The saturated adsorption capacity of benzene, adsorption interaction, desorption thermodynamic parameters, potential distribution curves and diffusion processes of benzene in CeY zeolites were analyzed. The results indicate that Ce ion can reduce the desorption activation energy, weaken the adsorption interaction force between benzene and Y zeolites, and modulate the adsorbed state of benzene molecules from agglomerate state to dispersed state, which are main factors to optimize the product selectivity of light oil components in the fluid catalytic cracking (FCC) process with CeY zeolite catalyst.
  • 加载中
    1. [1]

      GABRIELA D L P, SEDRAN U. Conversion of methylcyclopentane on rare earth exchanged Y zeolite FCC catalysts[J]. Appl Catal A:Gen, 1996,144(1/2):147-158.  

    2. [2]

      GABRIELA D L P, EDUARDO F S, FATIMA M, Zanon Z, VERA L D C. Influence of different rare earth ions on hydrogen transfer over Y zeolite[J]. Appl Catal A:Gen, 2000,197(1):41-46. doi: 10.1016/S0926-860X(99)00531-1

    3. [3]

      LIU X M, LIU S, LIU Y X. A potential substitute for CeY zeolite used in fluid catalytic cracking process[J]. Microporous Mesoporous Mater, 2016,226:162-168. doi: 10.1016/j.micromeso.2015.12.046

    4. [4]

      CERQUEIRA H S, CAEIRO G, COSTA L, RAMOA RIBEIRO F J. Deactivation of FCC catalysts[J]. J Mol Catal A:Chem, 2008,292:1-13. doi: 10.1016/j.molcata.2008.06.014

    5. [5]

      GUZMAN A, ZUAZO I, FELLER A, OLINDO R, SIEVERS C, LERCHER J A. On the formation of the acid sites in lanthanum exchanged X zeolites used for isobutane/cis-2-butene alkylation[J]. Microporous Mesoporous Mater, 2005,83:309-318. doi: 10.1016/j.micromeso.2005.04.024

    6. [6]

      ARBUZNIKOV A, VASILYEV V, GOURSOT A. Relationships between the structure of a zeolite and its adsorption properties[J]. Surf Sci, 1998,397:395-405. doi: 10.1016/S0039-6028(97)00760-7

    7. [7]

      SONG L J, SUN Z L, BAN H Y, DAI M, REES L V C. Studies of unusual adsorption and diffusion behaviour of benzene in silicalite-1[J]. Chem Chem Phys, 2004,6:4722-4731. doi: 10.1039/b406051b

    8. [8]

      BLIGAARD T, NÖRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. The Brönsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J Catal, 2004,224(1):206-217. doi: 10.1016/j.jcat.2004.02.034

    9. [9]

      BEZVERKHYY I, RYZHIKOV A, GADACZ G, BELLAT J P. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO[J]. Catal Today, 2008,130(1):199-205. doi: 10.1016/j.cattod.2007.06.038

    10. [10]

      LEE E F T, REES L V C. Calcination of cerium (Ⅲ) exchanged Y zeolite[J]. Zeolites, 1987,7(5):446-450. doi: 10.1016/0144-2449(87)90013-3

    11. [11]

      LOPES J M, RIBEIRO F R. Effect of rare-earth nature on the basic properties of zeolite NaX containing occluded rare-earth species[J]. J Mol Catal A:Chem, 2002,179:185-191. doi: 10.1016/S1381-1169(01)00324-7

    12. [12]

      CERQUEIRA H S, CAEIRO G, COSTA L, RIBEIRO F R. Deactivation of FCC catalysts[J]. J Mol Catal A:Chem, 2008,292:1-13. doi: 10.1016/j.molcata.2008.06.014

    13. [13]

      SHU Y, TRAVERT A, SCHILLER R, ZIEBARTH M, WORMSBECHER R, CHENG C W. Effect of ionic radius of rare earth on USY zeolite in fluid catalytic cracking:Fundamentals and commercial application[J]. Top Catal, 2015,58:334-342. doi: 10.1007/s11244-015-0374-0

    14. [14]

      DU X H, GAO X H, ZHANG H T, LI X L, LIU P S. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites[J]. Catal Commun, 2013,35:17-22. doi: 10.1016/j.catcom.2013.02.010

    15. [15]

      BOITON A P. The nature of rare-earth exchanged Y zeolites[J]. J Catal, 1971,22(1):9-15. doi: 10.1016/0021-9517(71)90259-4

    16. [16]

      SCHERZER J, RITTER R E. Ion-exchanged ultrastable Y zeolites 3 gas oil cracking over rare earth-exchanged ultrastable Y zeolites[J]. Ind Eng Chem Prod Res Dev, 1978,17(3):219-223. doi: 10.1021/i360067a008

    17. [17]

      YU Shan-qin, TIAN Hui-ping, DAI Zhen-yu, LONG Jun. Mechanism of the influence of lanthanum and cerium on the stability of Y zeolite[J]. Chin J Catal, 2010,31(10):1263-1270.  

    18. [18]

      SHU Y Y, TRAVERT A, SCHILLER R, MICHAEL Z, RICHARD W, WU C C. Effect of ionic radius of rare earth on USY zeolite in fluid catalytic cracking:Fundamentals and commercial application[J]. Top Catal, 2015,58:334-342. doi: 10.1007/s11244-015-0374-0

    19. [19]

      LU Tian, CHEN Fei-wu. Comparison of computational methods for atomic charges[J]. Acta Phys-Chim Sin, 2012,28(1):1-18.  

    20. [20]

      ZHANG Le, QIN Yu-cai, JI De-qiang, YANG Ye, JIA Wei-ming, SONG Li-juan. The effects of cerium ions migration on active sites of y zeolite[J]. Chin Rare Earth, 2016,37(4):16-22.

    21. [21]

      LEE C K, ASHTEKAR S, GLADDEN L F, BARRIE P J. Adsorption and desorption kinetics of hydrocarbons in FCC catalysts studied using a tapered element oscillating microbalance (TEOM). Part 1:Experimental measurements[J]. J Chem Eng Sci, 2004,59:1131-1138. doi: 10.1016/j.ces.2004.01.005 

    22. [22]

      BARRIE P J, LEE C K, GLADDEN L F. Adsorption and desorption kinetics of hydrocarbons in FCC catalysts studied using a tapered element oscillating microbalance (TEOM). Part 2:Numerical simulations[J]. Chem Eng Sci, 2004,59:1139-1151. doi: 10.1016/j.ces.2004.01.008

    23. [23]

      DUAN Lin-hai. Adsorption, diffusion on zeolite and it's application[D]. Lanzhou:Lanzhou University, 2006.

    24. [24]

      LIU Dao-sheng, HAN Chun-yu, DUAN Lin-hai, SONG Li-juan, SUN Zhao-lin. Activation energy of temperature programmed desorption calculated using least-squares method for benzene, thiophene and octane on NaY[J]. Acta Phys-Chim Sin, 2009,25(3):470-476.  

    25. [25]

      BROIDO A J. Sensitive graphical method of treating thermogravimetric analysis data[J]. Polym Sci Part B:Polym Phys, 1969,7(10):1761-1773. doi: 10.1002/pol.1969.160071012

    26. [26]

      FALCONER J L, MADIX R J. Desorption rate isotherms in flash desorption analysis[J]. J Catal, 1977,48(1/3):262-268.  

    27. [27]

      KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Anal Chem, 1957,29(11):1703-1706.  

    28. [28]

      YANG R T, STEINBERG M. Reaction kinetics and differential thermal analysis[J]. J Phys Chem, 1976,80(9):965-968. doi: 10.1021/j100550a009

    29. [29]

      SUN Shu-hong, PANG Xin-mei, ZHENG Shu-qin, ZHANG Zhong-dong. Preparation of FCC catalyst containing REUSY[J]. Chin Pet Proc Pet Technol, 2001,32(6):25-28.  

    30. [30]

      SOUSA-AGUIAR E F, TRIGUEIRO F E, ZOTIN F M Z. The role of rare earth elements in zeolites and cracking catalysts[J]. Catal Today, 2013,218-219:115-122. doi: 10.1016/j.cattod.2013.06.021

    31. [31]

      ZHANG Le, GAO Xiong-hou, ZHANG Yan-hui, SU Yi, ZHANG Ai-ping. Effects of sodium content on physicochemical properties of USY zeolite[J]. J Synthetic Crystals, 2014,43(2):454-464.  

    32. [32]

      SANDOVAL-DÍAZ L E, MARTÍNEZ-GIL J M, TRUJILLO C A. The combined effect of sodium and vanadium contamination upon the catalytic performance of USY zeolite in the cracking of n-butane:Evidence of path-dependent behavior in Constable-Cremer plots[J]. J Catal, 2012,294:89-98. doi: 10.1016/j.jcat.2012.07.009

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    8. [8]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    20. [20]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

Metrics
  • PDF Downloads(2)
  • Abstract views(1984)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return