Citation: WANG Qing, LI Chu-an, PAN Shuo, JIANG Jia-qi. A molecular simulation study on the adsorption of CH4 and CO2 on the mineral substances in oil shale[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1310-1316. shu

A molecular simulation study on the adsorption of CH4 and CO2 on the mineral substances in oil shale

  • Corresponding author: WANG Qing, rlx888@126.com
  • Received Date: 7 June 2017
    Revised Date: 2 August 2017

    Fund Project: the National Natural Science Foundation of China 51276034the National Natural Science Foundation of China 51676032the Program for Changjiang Scholars and Innovative Research Team in University IRF17R19The project was supported by the National Natural Science Foundation of China (51676032, 51276034) and the Program for Changjiang Scholars and Innovative Research Team in University(IRF17R19)

Figures(4)

  • The models of montmorillonite, kaolinite, calcite and gypsum as the mineral substances in oil shale were built by using Materials Studio 2017 software; the adsorption of CH4 and CO2 on these mineral substances was then simulated by the GCMC and MD method. The results illustrated that the adsorption capacity of CH4 and CO2 on four mineral substances under the same temperature and pressure follows the order of montmorillonite > kaolinite > gypsum > calcite. The adsorption of single component CH4 and CO2 is in accordance with the Langmuir isotherm and the adsorption heats for both CH4 and CO2 on four mineral models all are less than 42 kJ/mol, suggesting that the adsorption belongs to physical category. With the increase of temperature, both the adsorption capacity and adsorption heat are reduced; there is a positive correlation between the adsorption heat and adsorption capacity for the CH4 and CO2 molecules.
  • 加载中
    1. [1]

      DENG S, WANG Z, GU Q. Extracting hydrocarbons from Huadian oil shale by sub-critical water[J]. Fuel Process Technol, 2011,92(5):1062-1067. doi: 10.1016/j.fuproc.2011.01.001

    2. [2]

      YAO Zong-hui, ZHANG Ming-shan, ZENG Ling-bang. Analysis of the faults in the northern Ordos Basin[J]. Petrol Explor Dev, 2003,30(2):20-23.  

    3. [3]

      QIAN Jia-lin, WANG Jian-qiu, LI Shu-yuan. World oil shale[J]. Energy China, 2006,28(8):16-19.  

    4. [4]

      ZOU Yong-wen. Study on the basic characteristics of the Huadian oil shales and their semi-cokes[D]. Jilin:Northeast Electric Power University, 2010. 

    5. [5]

      JI Li-ming, QIU Jun-li, ZHANG Tong-wei. Experiments on methane adsorption of common clay minerals in shale[J]. Earth Sci:J China Univ Geosci, 2012,37(5):1043-1050.  

    6. [6]

      JI Li-ming, QIU Jun-li, XIA Yan-qing. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Pet Sin, 2012,33(2):249-256. doi: 10.7623/syxb201202009

    7. [7]

      SUN Ren-yuan, ZHANG Yun-fei, FAN Kun-kun. Molecular simulations of adsorption characteristics of clay minerals in shale[J]. J Chem Ind Eng, 2015,66(6):2118-2122.  

    8. [8]

      HOU Xin-juan, YANG Jian-li, LI Yong-wang. Quantum chemistry study on coal molecular structure[J]. J Fuel Chem Technol, 1999,27(s1):143-149.  

    9. [9]

      YANG X, ZHANG C. Structure and diffusion behavior of dense carbon dioxide fluid in clay-like slit pores by molecular dynamics simulation[J]. Chem Phys Lett, 2005,407(4):427-432.

    10. [10]

      RU-Xin. Study on the experiment and molecular simulation of oil shale pyrolysis[D]. Jilin:Jilin University, 2013.

    11. [11]

      WANG Mao-zhen, LIU Shao-bo, REN Yong-jun. Pore characteristics and methane adsorption of clay minerals in Shale gas reservoir[J]. Geol Rev, 2015,61(1):207-216.  

    12. [12]

      JIN Z, FIROOZABADI A. Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations[J]. Fluid Phase Equilib, 2013,360(1):456-465.

    13. [13]

      SKIPPER N T. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. methodology[J]. Clays Clay Miner, 1995,43(3):285-293. doi: 10.1346/CCMN

    14. [14]

      LEVY J H, DAY S J, KILLINGLEY J S. Methane capacities of Bowen Basin coals related to coal properties[J]. Fuel, 1997,76(9):813-819. doi: 10.1016/S0016-2361(97)00078-1

    15. [15]

      ASTASHOV A V, BELYI A A, BUNIN A V. Quasi-equilibrium swelling and structural parameters of coals[J]. Fuel, 2008,87(15/16):3455-3461.  

    16. [16]

      LIU Y, WILCOX J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons[J]. Environ Sci Technol, 2012,46(3)1940. doi: 10.1021/es204071g

    17. [17]

      WANG Qin, SUN Bin, LIU Hong-peng. Analysis of mineral behavior during pyrolysis of oil shale[J]. J Fuel Chem Technol, 2013,41(2):163-168.  

    18. [18]

      JI L, ZHANG T, MILLIKEN K L. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Appl Geochem, 2012,27(12):2533-2545. doi: 10.1016/j.apgeochem.2012.08.027

    19. [19]

      ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Mar Petrol Geol, 2009,26(6):916-927. doi: 10.1016/j.marpetgeo.2008.06.004

    20. [20]

      BUSTIN R M, CLARKSON C R. Geological controls on coalbed methane reservoir capacity and gas content[J]. Int J Coal Geol, 1998,38(66):3-26.  

    21. [21]

      KROOSS B M, BERGEN F V, GENSTERBLUM Y. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. Int J Coal Geol, 2002,51(2):69-92. doi: 10.1016/S0166-5162(02)00078-2

    22. [22]

      MASTALERZ M, GLUSKOTER H, RUPP J. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA[J]. Int J Coal Geol, 2004,60(1):43-55. doi: 10.1016/j.coal.2004.04.001

    23. [23]

      NODZEŃSKI A. Sorption and desorption of gases (CH4, CO2) on hard coal and active carbon at elevated pressures[J]. Fuel, 1998,77(11):1243-1246. doi: 10.1016/S0016-2361(98)00022-2

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    9. [9]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    15. [15]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    20. [20]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

Metrics
  • PDF Downloads(8)
  • Abstract views(1758)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return