Citation: Wu Rui, Lu Jiufu, Hao Liang, Zhang Qiang. Molecular Imaging Probes[J]. Chemistry, ;2019, 82(10): 886-892. shu

Molecular Imaging Probes

  • Received Date: 28 June 2019
    Accepted Date: 3 August 2019

Figures(7)

  • Molecular imaging has been experiencing an unprecedented expansion in recent years in biomedical fields and plays an important role in diagnosis and treatment. It is also an interdisciplinary discipline involving chemistry, medicine, biology, computer science, radiology, and materials science. With the development of molecular imaging, the key factor for molecular imaging is to synthesize smart and efficient imaging probes as well as the need for advanced imaging equipment. Excellent progress has been achieved in molecular imaging probes, and it has been widely applied in research and clinic. In this paper, the progress in main five types of molecular imaging probes, including ultrasound imaging probe, X-ray computed tomography (CT) imaging probe, optical imaging probe, nuclear magnetic resonance imaging (MRI) probe, positron emission tomography (PET) imaging probe were reviewed. The application of the molecular imaging probe was introduced. Finally, the development of molecular imaging in the future was prospected.
  • 加载中
    1. [1]

      W F Lai, A L Rogach, W T Wing. Chem. Soc. Rev., 2017, 46:6379~6419. 

    2. [2]

      F M Tarik, S G Sanjiv. Genes Dev., 2003, 17:545~580. 

    3. [3]

      V Gujrati, A Mishra and V Ntziachristos. Chem. Commun., 2017, 53:4653~4672. 

    4. [4]

      S H Crayton, A K Chen, J F Liu et al. Molecular Imaging//, Comprehensive Biomaterials Ⅱ, Elsevier, 2017, 3:24~46.

    5. [5]

      Y Y Hong, K Heebeom, K Kwangmeyung et al. Biomaterials, 2017, 132:28~36. 

    6. [6]

      P Parasuraman, K Ajay, K Sundramurthy et al. Acta Biomater., 2016, 41:1~16. 

    7. [7]

      P Arbeille, V Eder, D Casset et al. Ultras. Med. Biol., 2000, 26:201~208. 

    8. [8]

      W B Cai, X Y Chen. Small, 2007, 3:1840~1854. 

    9. [9]

      Y Y Wang, X J Liu, G Y Deng et al. J. Mater. Chem., 2017, 5:4221~4232. 

    10. [10]

    11. [11]

      Y Li, Y H Chen, M Du et al. ACS Biomater. Sci. Eng., 2018, 4:2716~2728. 

    12. [12]

      S Mather. Bioconj. Chem., 2009, 20:631~643. 

    13. [13]

      S Tinkov, R Bekeredjian, G Winter et al. J. Pharm. Sci., 2009, 98:1935~1961. 

    14. [14]

      S Tinkov, R Bekeredjian, G Winter et al. Adv. Drug. Deliv. Rev., 2008, 60:1153~1166. 

    15. [15]

      G Wang, H Y Yu, M B De. Med. Phys., 2008, 35:1051~1064. 

    16. [16]

      A J Mieszawska, W J M Mulder, Z A Fayad et al. Mol. Pharm., 2013, 10:831~847. 

    17. [17]

      P K Jain, I H Sayed, M A E Sayed. Nano Today, 2007, 2:18~29.

    18. [18]

      K Sahak, S S Agasti, C Kim et al. Chem. Rev., 2012, 112:2739~2779. 

    19. [19]

      J Hainfeld, D Slatkin, T Focella et al. Brit. J. Radiol., 2006, 79:248~253. 

    20. [20]

      R Popovtzer, A Agrawal, N A Kotov et al. Nano Lett., 2008, 8:4593~4596. 

    21. [21]

      D Kim, S Park, J H Lee et al. J. Am. Chem. Soc., 2007, 129:7661~7665. 

    22. [22]

      M Y Benjamin, F Paul, F FitzGerald et al. Adv. Drug. Deliv. Rev., 2017, 113:201~222. 

    23. [23]

      R Wu, S H Zhang, Q Zhang et al. Sens. Actuat B, 2019, 282:750~755. 

    24. [24]

       

    25. [25]

      T Xiong, Z H Zhang, B F Liu et al. Oral. Oncol., 2005, 41:709~715. 

    26. [26]

      M H Chen, Y T Pan, Y C Chen et al. Chem. Sci., 2018, 9:3141~3151. 

    27. [27]

    28. [28]

      L Donaldson. Mater. Today, 2012, 15:1~9. 

    29. [29]

      S A Shojaee, A Zandiatashbar, N Koratkar et al. Carbon, 2013, 62:510~513. 

    30. [30]

      S Y Lin, N T Chen, S P Sum et al. Chem. Commun., 2008, 39:4762~4764.

    31. [31]

      S H Zhang, H B Cui, M Gu et al. Small, 2019, 15:1804662~1804671. 

    32. [32]

      T Ozawa, H Yoshimura, S B Kim et al. Anal. Chem., 2013, 85:590~609. 

    33. [33]

      M Edinger, P Hoffmann, C H Contag et al. Methods, 2003, 31:172~179. 

    34. [34]

      H Caysa, R Jacob, N Müther et al. Photochem. Photobiol. Sci., 2009, 8:52~56. 

    35. [35]

      M K Yu, Y Y Jeong, J Parkl. Angew. Chem. It. Ed., 2008, 47:5362~5365. 

    36. [36]

      Z F Gao, X J Liu, Y Y Wang et al. Dalton Transac., 2016, 45:19519~19528. 

    37. [37]

      S J Liu, B Jia, R R Qiao et al. Mol. Pharm., 2009, 6:1074~1082. 

    38. [38]

      X M Hou, X D Wang, R Liu. RSC Adv., 2017, 7:18844~18850. 

    39. [39]

      X M Lu, C Wang, X Li et al. Bioorg. Med. Chem., 2019, 27:545~551. 

    40. [40]

      H D auwen, V B Clster, C M Deroose et al. Gynecol, 2013, 131:694~700.

    41. [41]

      M Fularz, P Adamiak, R Czepczynski et al. Ginekol. Pol., 2013, 84:720~725.

    42. [42]

      M J Song, S H Bae, S W Lee et al. Eur. J. Nucl. Med. Mol. Imag., 2013, 40:865~873. 

    43. [43]

      R Wu, J F Lu, J Song et al. Chin. J. Inorg. Chem., 2019, 35:891~900.

    44. [44]

      S Richter, M Wuest, C N Bergman. Bioconj. Chem., 2015, 26:201~212. 

    45. [45]

      J Ermert. Biomed. Res. Int., 2014, 81:2973~2978.

    46. [46]

      W R Sanhal, J H Sakamoto, R Canady. Nat. Nanotechnol., 2008, 3:242~244. 

    47. [47]

      N J Taylor, E Emer, S Preshlock et al. J. Am. Chem. Soc., 2017, 139:8267~8276. 

    48. [48]

      J H Lee, H B Zhou, C S Dence. Bioconju. Chem., 2010, 21:1096~1104. 

    49. [49]

      H L Kim, K. Sachin, H J Jeong. ACS Med. Chem. Lett., 2015, 6:402~407. 

    50. [50]

      S Verhoog, C W Kee, Y Wang. J. Am. Chem. Soc., 2018, 142:1572~1575.

    51. [51]

      L Q Xiong, B Shen, D Behera et al. Nanoscale, 2013, 5:3253~3256. 

    52. [52]

      M Radović, S V Durić, N Nikolić et al. J. Mater. Chem., 2012, 22:24017~24025. 

    53. [53]

      M Radović, M Mirković, M Perić et al. J. Mater. Chem. B, 2017, 5:8738~8747. 

    54. [54]

      H Honarvar, C Müller, S Cohrs et al. Nucl. Med. Biol., 2017, 45:15~21. 

    55. [55]

      N K Devaraj, E J Keliher, G M Thurber et al. Bioconj. Chem., 2009, 20:397~401. 

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    5. [5]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    10. [10]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    11. [11]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    14. [14]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    15. [15]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    16. [16]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    17. [17]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(0)
  • Abstract views(6100)
  • HTML views(1959)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return