Citation: Su Bin, Liu Ying, Zhu Enwei, Che Guangbo. The Application of Doped PEDOT:PSS as Hole Transport Layer in Perovskite Solar Cells[J]. Chemistry, ;2020, 83(8): 698-703. shu

The Application of Doped PEDOT:PSS as Hole Transport Layer in Perovskite Solar Cells

  • Corresponding author: Che Guangbo, guangboche@jlnu.edu.cn
  • Received Date: 1 March 2020
    Accepted Date: 22 March 2020

Figures(4)

  • Perovskite solar cells (PSCs) have attracted considerable research attention because of their ease of fabrication, low-production cost and excellent power conversion efficiencies. PEDOT:PSS has become a research hotspot of hole transport layer in PSCs due to its low temperature processing, high transmittance and suitable hole mobility. This paper briefly describes the structure and working principle of inverted PSCs, and focuses on the research status of doped PEDOT:PSS hole transport layer in the field of PSCs. The effects of doped PEDOT:PSS hole transport layer on the performance of PSCs are summarized in terms of organic compound dopants, inorganic compound dopants and surfactant dopants. Finally, potential measures are proposed to improve the application of doped PEDOT:PSS layer in PSCs.
  • 加载中
    1. [1]

      Kojima A, Teshima K, Shirai Y, et al. J. Am. Chem. Soc., 2009, 131(17):6050-6051. 

    2. [2]

      Boyd C C, Cheacharoen R, Leijtens T, et al. Chem. Rev., 2019, 119(5):3418-3451. 

    3. [3]

      Xu L, Chen X, Jin J, et al. Nano Energy, 2019, 63:103860. 

    4. [4]

      Jena A K, Kulkarni A, Miyasaka T. Chem. Rev., 2019, 119(5):3036-3103. 

    5. [5]

      Yu Z, Hagfeldt A, Sun L. Coord. Chem. Rev., 2020, 406:213143. 

    6. [6]

      Reza K M, Gurung A, Bahrami B, et al. J. Energy Chem., 2020, 44:41-50. 

    7. [7]

      Zhou X, Hu M, Liu C, et al. Nano Energy, 2019, 63:103866. 

    8. [8]

      Huang D, Goh T, Kong J, et al. Nanoscale, 2017, 9(12):4236-4243. 

    9. [9]

      Adam G, Kaltenbrunner M, Głowacki E D, et al. Sol. Energy Mater. Sol. Cells, 2016, 157:318-325. 

    10. [10]

      Li H, Zhang C, Ma Y, et al. J. Energy Chem., 2019, 32:71-77. 

    11. [11]

      Zheng Y, Yu J, Tang J, et al. J. Phys. D, 2019, 52(25):255104. 

    12. [12]

      Li J F, Zhao C, Zhang H, et al. Chin. Phys. B, 2015, 25(2):028402.

    13. [13]

      Wang Q, Chueh C C, Eslamian M, et al. ACS Appl. Mater. Interf., 2016, 8(46):32068-32076. 

    14. [14]

      Yi M, Jang W, Wang D H. ACS Sustain. Chem. Eng., 2019, 7(9):8245-8254. 

    15. [15]

      Liu D, Li Y, Yuan J, et al. J. Mater. Chem. A, 2017, 5(12):5701-5708. 

    16. [16]

      Zhang X F, Zhou X, Zhang L, et al. J. Mater. Chem. A, 2018, 6(26):12515-12522. 

    17. [17]

      Li H, Zhang C, Ma Y, et al. Org. Electron., 2018, 62:468-473. 

    18. [18]

      Huang X, Wang K, Yi C, et al. Adv. Energy Mater., 2016, 6(3):1501773. 

    19. [19]

      Zuo C, Ding L. Adv. Energy Mater., 2017, 7(2):1601193. 

    20. [20]

      Huang D, Goh T, McMillon-Brown L, et al. ACS Appl. Mater. Interf., 2018, 10(30):25329-25336. 

    21. [21]

      Ma S, Qiao W, Cheng T, et al. ACS Appl. Mater. Interf., 2018, 10(4):3902-3911. 

    22. [22]

      Giuri A, Masi S, Colella S, et al. IEEE Transac. Nanotechnol., 2016, 15(5):725-730. 

    23. [23]

      Wang S, Huang X, Sun H, et al. Nanoscale Res. Lett., 2017, 12(1):619. 

    24. [24]

      Huang X, Guo H, Yang J, et al. Org. Electron., 2016, 39:288-295. 

    25. [25]

      Guo H, Huang X, Pu B, et al. RSC Adv., 2017, 7(79):50410-50419. 

    26. [26]

      Niu J, Yang D, Ren X, et al. Org. Electron., 2017, 48:165-171. 

    27. [27]

      Wang Z K, Li M, Yuan D X, et al. ACS Appl. Mater. Interf., 2015, 7(18):9645-9651. 

    28. [28]

      Liu C, Su Z, Li W, et al. Org. Electron., 2016, 33:221-226. 

    29. [29]

      Jiang Y, Li C, Liu H, et al. J. Mater. Chem. A, 2016, 4(25):9958-9966. 

    30. [30]

      Zhu J Y, Niu K, Li M, et al. Org. Electron., 2018, 54:9-13. 

    31. [31]

      Kanwat A, Rani V S, Jang J. New J. Chem., 2018, 42(19):16075-16082. 

    32. [32]

      Yi H, Wang D, Duan L, et al. Electrochim. Acta, 2019, 319:349-358. 

    33. [33]

      Sun W, Li Y, Xiao Y, et al. Org. Electron., 2017, 46:22-27. 

    34. [34]

      Wang Y, Hu Y, Han D, et al. Org. Electron., 2019, 70:63-70. 

    35. [35]

      Hu L, Sun K, Wang M, et al. ACS Appl. Mater. Interf., 2017, 9(50):43902-43909. 

    36. [36]

      Erazo E A, Castillo-Bendeck D, Ortiz P, et al. Synth. Met., 2019, 257:116178. 

    37. [37]

      Liu X, Li B, Zhang N, et al. Nano Energy, 2018, 53:567-578. 

    38. [38]

      Fan P, Zheng D, Zheng Y, et al. Electrochim. Acta, 2018, 283:922-930. 

    39. [39]

      Jiang K, Wu F, Zhang G, et al. J. Mater. Chem. A, 2019, 7(38):21662-21667. 

    40. [40]

      Xu L, Li Y, Zhang C, et al. Sol. Energy Mater. Sol. Cells, 2019:110316.

    41. [41]

      Qian M, Li M, Shi X B, et al. J. Mater. Chem. A, 2015, 3(25):13533-13539. 

    42. [42]

      Yoon S, Ha S R, Moon T, et al. J. Power Sources, 2019, 435:226765. 

    43. [43]

      Wang D, Elumalai N K, Mahmud M A, et al. Synth. Met., 2018, 246:195-203. 

    44. [44]

      Cheng C J, Balamurugan R, Liu B T. Micromachines, 2019, 10(10):682. 

    45. [45]

      Zhu Y, Wang S, Ma R, et al. Sol. Energy, 2019, 188:28-34. 

    46. [46]

      Shin D, Kang D, Lee J B, et al. ACS Appl. Mater. Interf., 2019, 11(18):17028-17034. 

    47. [47]

      Syed A A, Poon C Y, Li H W, et al. J. Mater. Chem. C, 2019, 7(18):5260-5266. 

    48. [48]

      Hu W, Xu C Y, Niu L B, et al. ACS Appl. Mater. Interf., 2019, 11(24):22021-22027. 

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    7. [7]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    8. [8]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    9. [9]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    12. [12]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    13. [13]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    17. [17]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    18. [18]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    19. [19]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    20. [20]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

Metrics
  • PDF Downloads(55)
  • Abstract views(3036)
  • HTML views(1188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return