Citation: ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei, HAN Kui-hua, LI Ying-jie, ZHU Ying. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1224-1235. shu

Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study

  • Corresponding author: NIU Sheng-li, nsl@sdu.edu.cn
  • Received Date: 26 August 2020
    Revised Date: 23 September 2020

    Fund Project: The National Natural Science Foundation of China 51576117Important Project in the Scientific Innovation of Shandong Province 2019JZZY020305The National Natural Science Foundation of China 21906090The project was supported by the National Natural Science Foundation of China (51576117, 21906090) and Important Project in the Scientific Innovation of Shandong Province (2019JZZY020305).

Figures(9)

  • The promoting effect of a typical transition metal Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction (SCR) of NO with ammonia was investigated by density functional theory (DFT) calculation. Various doping models of single Ti and double Ti at different Fe sites on the γ-Fe2O3(001) surface were constructed; the surface doping formation energy was calculated, the adsorption characteristics of O2, NO and NH3 molecules on γ-Fe2O3 (001) surface before and after Ti doping were compared, and the reaction mechanism was analyzed. The results illustrate that single Ti atom tends to be doped at octahedral Feoct site, whereas two Ti atoms at two Feoct sites. The adsorption of O2 onto the catalyst surface can be enhanced through the Ti doping; moreover, the enhancement increases with an increase in the doping content of Ti. Both single Ti and double Ti doping inhibit the N-terminal adsorption of NO on the catalyst surface. Ti can enhance the Lewis acid sites and promote the adsorption of NH3, which is beneficial to SCR reaction. The doping of Ti increases the energy barrier of NO2 formation and reduces the SCR reaction of γ-Fe2O3 at low temperature. The doping of Ti can inhibit the formation of NH and N, avoid the excessive oxidation of NH3, and improve the utilization of NH3, which are beneficial to the SCR reaction by suppressing the N2O produced by the E-R mechanism and enhancing the selectivity to N2. As a result, the Ti doping can significantly improve catalytic performance of γ-Fe2O3 in the NH3-SCR of NO.
  • 加载中
    1. [1]

      LI Ying, NIU Sheng-li, LU Chun-mei, WANG Jia-xing, PENG Jian-sheng. Molecular simulation study of NO heterogeneous reduction by biomass reburning[J]. J Fuel Chem Technol, 2020,48(6):689-697.  

    2. [2]

      SHU Hang, ZHANG Yu-hua, YANG Lin-jun, LIU Ya-ming, LI Fang-yong, XU Qi-sheng, PAN Si-wei. Effects of SCR-DeNOx system on emission characteristics of fine particles[J]. J Fuel Chem Technol, 2015,43(12):1510-1515.  

    3. [3]

      LI Y H, DENG J L, SONG W Y, LIU J, ZHAO Z, GAO M L, WEI Y C, ZHAO L. Nature of Cu Species in Cu-SAPO-18 catalyst for NH3-SCR:Combination of experiments and DFT calculations[J]. J Phys Chem C, 2016,120(27):14669-14680. doi: 10.1021/acs.jpcc.6b03464

    4. [4]

      LIN Zhuo-wei, LU Qiang, TANG Hao, LI Hui, DONG Chang-qing, YANG Yong-ping. Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts[J]. J Fuel Chem Technol, 2017,45(1):113-122.  

    5. [5]

      HUSNAIN N, WANG E L, LI K, ANWAR M T, MEHMOOD A, GUL M, LI D L, MAO J D. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Rev Chem Eng, 2018,35(2):239-264.  

    6. [6]

      WANG Fang, YAO Gui-huan, GUI Ke-ting. Comparison about selective catalytic reduction of de-NOx on iron-based magnetic materials[J]. Proc CSEE, 2009,29(29):49-53.  

    7. [7]

      LIANG H, GUI K T, ZHA X B. DRIFTS study of γFe2O3 nano-catalyst for low-temperature selective catalytic reduction of NOx with NH3[J]. Can J Chem Eng, 2016,94(9):1668-1675. doi: 10.1002/cjce.22546

    8. [8]

      PENG Jian-sheng, WANG Dong, ZHANG Xin-li, LU Chun-mei, NIU Sheng-li, LI Jing, XU Li-ting. Kinetic study of selective catalytic reduction of NOx by NH3 on magnetic γ-Fe2O3 catalyst[J]. Proc CSEE, 2015,35(18):4690-4696.  

    9. [9]

      YANG S J, LI J H, WANG C Z, CHEN J H, MA L, CHANG H Z, CHEN L, YUE P, YAN N Q. Fe-Ti spinel for the selective catalytic reduction of NO with NH3:Mechanism and structure-activity relationship[J]. Appl Catal B:Environ, 2012,117-118:73-80. doi: 10.1016/j.apcatb.2012.01.001

    10. [10]

      WANG Dong, WU Jing-kun, NIU Sheng-li, LU Chun-mei, XU Li-ting, YU He-wei, LI Jing. Structural property of γ-Fe2O3 catalysts doped with Sn and Ti and their activity in the selective catalytic reduction of NOx[J]. J Fuel Chem Technol, 2015,43(7):876-883.  

    11. [11]

      LU W, CUI S P, GUO H X. Study the low-temperature SCR property of M-doped (M=Ni, Cr, Co, Se, Sn) MnO2(100) through density functional theory (DFT):Improvement of sulfur poisoning resistance[J]. Mol Catal, 2018,459:31-37. doi: 10.1016/j.mcat.2018.08.020

    12. [12]

      LIU Z M, MA L L, JUNAID A S M. NO and NO2 adsorption on Al2O3 and Ga modified Al2O3 surfaces:A density functional theory study[J]. J Phys Chem C, 2010,114(10):4445-4450. doi: 10.1021/jp907925w

    13. [13]

      ZHANG X P, LI Z F, ZHAO J J, CUI Y Z, TAN B J, WANG J X, ZHANG C X, HE G H. Mechanism of Ce promoting SO2 resistance of MnOx/γ-Al2O3:An experimental and DFT study[J]. Korean J Chem Eng, 2017,34(7):1-7.  

    14. [14]

      REN D D, GUI K T. Study of the adsorption of NH3 and NOx on the nano-γFe2O3 (001) surface with density functional theory[J]. Appl Surf Sci, 2019,487:171-179. doi: 10.1016/j.apsusc.2019.04.250

    15. [15]

      REN D D, GUI K T, GU S C, WEI Y L. Study of the nitric oxide reduction of SCR-NH3 on γ-Fe2O3 catalyst surface with quantum chemistry[J]. Appl Surf Sci, 2020,509144659. doi: 10.1016/j.apsusc.2019.144659

    16. [16]

      JΦRGENSEN J E, MOSEGAARD L, THOMSEN L E, JENSEN T R, HANSON J C. Formation of γ-Fe2O3 nanoparticles and vacancy ordering:An in situ X-ray powder diffraction study[J]. J Solid State Chem, 2007,180(1):180-185.  

    17. [17]

      JIAN W, WANG S P, ZHANG H X, BAI F Q. Disentangling the role of oxygen vacancies on the surface of Fe3O4 and γ-Fe2O3[J]. Inorg Chem Front, 2019,6(10):2660-2666. doi: 10.1039/C9QI00351G

    18. [18]

      BAETZOLD R C, YANG H. Computational study on surface structure and crystal morphology of γ-Fe2O3:Toward deterministic synthesis of nanocrystals[J]. J Phys Chem B, 2003,107(51):14357-14364. doi: 10.1021/jp035785k

    19. [19]

      GUO P, GUO X, ZHENG C G. Roles of γ-Fe2O3 in fly ash for mercury removal:Results of density functional theory study[J]. Appl Surf Sci, 2010,256(23):6991-6996. doi: 10.1016/j.apsusc.2010.05.013

    20. [20]

      SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation:Ideas, illustrations and the CASTEP code[J]. J Phys-Condens Matter, 2002,14(11)2717. doi: 10.1088/0953-8984/14/11/301

    21. [21]

      HUBER K P, HERZBERG G. Molecular spectra and molecular structure:Ⅳ. Constants of diatomic molecules[M]. New York:Springer Science & Business Media, 2013.

    22. [22]

      LI Shu-ping, MENG Jiang, WANG Ji-gang. Parallel adsorption for NO on the surfaces of Ben (n=2-12) clusters[J]. J At Mol Phys, 2019,36(2):240-245.  

    23. [23]

      LIDE D R. CRC Handbook of Chemistry and Physics[M]. 81st. Boca Raton:CRC Press, 2000.

    24. [24]

      LYU Z K, NIU S L, LU C M, ZHAO G J, GONG Z Q, ZHU Y. A density functional theory study on the selective catalytic reduction of NO by NH3 reactivity of α-Fe2O3 (001) catalyst doped by Mn, Ti, Cr and Ni[J]. Fuel, 2020,267117147. doi: 10.1016/j.fuel.2020.117147

    25. [25]

      BENTARCURT Y L, CALATAYUD M, KLAPP J, RUETTE F. Periodic density functional theory study of maghemite (001) surface. Structure and electronic properties[J]. Surf Sci, 2018,677:239-253. doi: 10.1016/j.susc.2018.06.005

    26. [26]

      ZHANG Qian. DFT study of NH3 and NO adsorption behavior on Fe doping MnO2(110) surface[D]. Taiyuan: Taiyuan University of Technology, 2015.

    27. [27]

      LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol, 2020,48(2):172-178.  

    28. [28]

      YUAN R M, FU G, XU X, WAN H L. Brønsted-NH4+ mechanism versus nitrite mechanism:new insight into the selective catalytic reduction of NO by NH3[J]. Phys Chem Chem Phys, 2011,13(2):453-460. doi: 10.1039/C0CP00256A

    29. [29]

      HU Hai-peng, WANG Xue-tao, ZHANG Xing-yu, SU Xiao-xin, YANG Xiao-dong, SHI Rui-hua. Performance of Fe-Cu/ZSM-5 catalyst in the deNOx process via NH3-SCR[J]. J Fuel Chem Technol, 2018,46(2):225-232.  

    30. [30]

      LIANG Hui, CHA Xian-bin, GUI Ke-ting. A study of selective catalysis reduction denitration performance and adsorption of NH3 and NO over γFe2O3 catalyst[J]. Proc CSEE, 2014,34(32):5734-5740.  

    31. [31]

      YANG S J, CHANG H Z, MA L, QU Z, YAN N Q, WANG C Z, LI J H. Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures:NO reduction versus NH3 oxidization[J]. Ind Eng Chem Res, 2013,52(16):5601-5610. doi: 10.1021/ie303272u

    32. [32]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.  

    33. [33]

      LI Zhi-peng, NIU Sheng-li, HAN Kui-hua, LU Chun-mei. Molecular simulation of the effect of doping modification on the adsorption properties of calcium-aluminum-based composites ester exchange catalysts[J]. CIESC, 2020,71(8):3625-3632.  

    34. [34]

      GUO M Y, ZHAO P P, LIU Q L, LIU C X, HAN J F, JI N, SONG C F, MA D G, LU X B, LIANG X Y, LI Z G. Improved low-temperature activity and H2O resistance of Fe-doped Mn-Eu catalysts for NO removal by NH3-SCR[J]. ChemCatChem, 2019,11(19):4954-4965. doi: 10.1002/cctc.201900979

    35. [35]

      TRONCONI E, NOVA I, CIARDELLI C, CHATTERJEE D, WEIBEL M. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. J Catal, 2007,245(1):1-10.  

    36. [36]

      QI Fei-hong. Improvement of the activity of Fe-Ti spinel for the selective catalytic reduction of NO with NH3 at low temperatures[D]. Nanjing: Nanjing University of Science and Technology, 2016.

    37. [37]

      DU Xiao-rui. Experimental and mechanistic studies on catalytic reduction of NO by iron-based spinel[D]. Wuhan: Huazhong University of Science and Technology, 2019.

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    3. [3]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    4. [4]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    7. [7]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    8. [8]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    9. [9]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    10. [10]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    11. [11]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    12. [12]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    20. [20]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

Metrics
  • PDF Downloads(9)
  • Abstract views(1094)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return