Citation: KANG He-fei, CUI Hai-tao, WANG Ji-ru, SONG Mao-ning, ZHAO Liang-fu. Effect of Mg/P mol ratio on the catalytic performance of NiW/MgAPO-5 in the hydrocracking of tetralin to BTEX[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(2): 227-234. shu

Effect of Mg/P mol ratio on the catalytic performance of NiW/MgAPO-5 in the hydrocracking of tetralin to BTEX

  • Corresponding author: CUI Hai-tao, cuiht@sxicc.ac.cn;lfzhao@sxicc.ac.cn ZHAO Liang-fu, lfzhao@sxicc.ac.cn
  • Received Date: 10 November 2016
    Revised Date: 15 December 2016

    Fund Project: the Technology Research and Demonstration Project of High Temperature Coal Tar to light aromatics MJH2016-04Strategic Science and Technology Project of Chinese Academy of Science  XDA07020200the Development of Gasification Coal Tar Hydrogenation in Furnace of Lu Qi  CFBYKJ-JSFW-01-2014

Figures(8)

  • A series of MgAPO-5 molecular sieves with a wide range of Mg/P mol ratios in the gel was synthesized by a hydrothermal process.Using MgAPO-5 as acidic supports, the bifunctional NiW/MgAPO-5 catalysts were prepared by impregnation method, and applied to the hydrocracking of tetralin to produce BTEX.The synthesized MgAPO-5 molecular sieves and NiW/MgAPO-5 samples were characterized by XRD, N2 adsorption, SEM, NH3-TPD, Py-FTIR and H2-TPR.The results exhibit that the Mg/P mol ratio has a great influence on the unit cell parameters, morphology, the Mg content and the acidity of MgAPO-5 samples, and the ion of Mg2+ is incorporated into the framework.In the hydrocracking of tetralin, with the same amount of NiW, the activity of NiW/MgAPO-5 is primarily controlled by the acidic strength of MgAPO-5.The selectivity of BTEX was determined by the combined effect of the acidity of MgAPO-5 and the (de) hydrogenation function of NiW.The highest conversion is achieved with the Mg/P mol ratio of 0.05, and the best BTEX selectivity is obtained with the Mg/P mol ratio of 0.03.
  • 加载中
    1. [1]

      ZHANG Quan-xin, LIU Xi-rao. Hydrocracking of polycyclic aromatic hydrocarbon[J]. Ind Catal, 2001,9(2):10-16.

    2. [2]

      CORMA A, GONZALEZ-ALFARO V, ORCHILLÉS A. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil[J]. J Catal, 2001,200(1):34-44. doi: 10.1006/jcat.2001.3181

    3. [3]

      HAN Chong-ren.Technics and Engineering of Hydrocracking[M].Beijing:Sinopc Press, 2001.

    4. [4]

      WILSON S T, LOK B M, MESSINA C A, CANNAN T R, FLANIGEN E M. Aluminophosphate molecular sieves:A new class of microporous crystalline inorganic solids[J]. J Am Chem Soc, 1982,104(4):1146-1147. doi: 10.1021/ja00368a062

    5. [5]

      CHATTERJEE A. A reactivity index study to rationalize the effect of dopants on Bronsted and Lewis acidity occurring in MeAlPOs[J]. J Mol Graphics Modell, 2006,24(4):262-270. doi: 10.1016/j.jmgm.2005.09.003

    6. [6]

      (DONG Song-tao. Study on selectivity of hydrocracking catalysts[D]. Beijing:Research institute of Petroleum Processing, 2001.)

    7. [7]

      YANG Xiao-mei, XU Zhu-sheng, MA Huai-jun, XU Yun-peng, TIAN Zhi-jian, LIN Li-wu. Synthesis of MgAPO-11 Molecular sieves and the catalytic performance of Pt/MgAPO-11 for n-dodecance hydroisomerization[J]. Chin J Catal, 2006,27(11):1039-1044.

    8. [8]

      FENG L L, WANG C C, QI X Y. Catalytic cracking of n, -hexane over MeAPOs molecular sieves[C]. Advanced Materials Research. Trans Tech Publications, 2011, 236:1063-1066.

    9. [9]

      MEUSINGER J, VINEK H, LERCHER J. Cracking of n, -hexane and n-butane over SAPO5, MgAPO5 and CoAPO5[J]. J Mol Catal, 1994,87(2):263-273.

    10. [10]

      KIM J, BHATTACHARJEE S, JEONG K E, JEONG S Y, CHOI M, RYOO R, AHN W S. CrAPO-5 catalysts having a hierarchical pore structure for the selective oxidation of tetralin to 1-tetralone[J]. New J Chem, 2010,34(12):2971-2978. doi: 10.1039/c0nj00493f

    11. [11]

      ZHAO X, SUN Z, ZHU Z, LI A, LI G, WANG X. Evaluation of iron-containing aluminophosphate molecular sieve catalysts prepared by different methods for phenol hydroxylation[J]. Catal Lett, 2013,143(7):657-665. doi: 10.1007/s10562-013-1027-1

    12. [12]

      CHAREONPANICH M, ZHANG Z G, TOMITA A. Hydrocracking of aromatic hydrocarbons over USY-zeolite[J]. Energy Fuels, 1996,10(4):927-931. doi: 10.1021/ef950238m

    13. [13]

      CAO Zu-bin, QI Yu-tai. Study on the kinetics of tetralin hydrocracking over Mo-Ni/USY dual functional catalyst[J]. J Mol Catal, 2002,16(1):44-48.

    14. [14]

      WU Qian, DUAN Hui-feng, LI Tong-ming, ZHU Zhi-rong. Study on catalysts for phenanthrene hydrocracking to BTX[J]. J Fuel Chem Technol, 2012,40(8):996-1001.

    15. [15]

      UPARE D P, PARK S, KIM M S, KIM J, LEE D, LEE J, CHANG H, CHOI W, CHOI S, JEON Y P, PARK Y K, LEE C W. Cobalt promoted Mo/beta zeolite for selective hydrocracking of tetralin and pyrolysis fuel oil into monocyclic aromatic hydrocarbons[J]. Ind Eng Chem, 2016,35:99-107. doi: 10.1016/j.jiec.2015.12.020

    16. [16]

      LEE J, CHOI Y, SHIN J, LEE J K. Selective hydrocracking of tetralin for light aromatic hydrocarbons[J]. Catal Today, 2016,265:144-153. doi: 10.1016/j.cattod.2015.09.046

    17. [17]

      TANG Jin-lian, XU You-hao, WANG Xie-qing, GONG Jian-hong. Study on the naphthenic ring opening reactions of tetrahydronaphthalene over zeolite catalysts[J]. Pet Process Petrochem, 2012,43(1):20-25.

    18. [18]

      BENAZZI E, LEITE L, MARCHAL-GEORGE N, TOULHOAT H, RAYBAUD P. New insights into parameters controlling the selectivity in hydrocracking reactions[J]. J Catal, 2003,217(2):376-387. doi: 10.1016/S0021-9517(03)00041-1

    19. [19]

      MURUGAN B, RAMASWAMY V. Use of N, N-diisopropylethylamine for faster synthesis of AIPO-5 and MgAPO-5 molecular sieves and their characterization[J]. Stud Surf Sci Catal, 2004,154:971-977. doi: 10.1016/S0167-2991(04)80912-1

    20. [20]

      WEI Ying-xu, WANG Gong-wei, LIU Zhong-min, XU Lei, XIE Peng. Effects of acidity and pore structure of SAPO molecular sieves on dehydroisomerization of n, -butane to isobutene over Pd/SAPO catalysts[J]. Chin J Catal, 2001,22(6):537-540.

    21. [21]

      (YANG Xiao-mei. Shape-selective hydroisomerization of long-chain n-alkanes over multi-functional catalysts[D]. Dalian:Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2006.)

    22. [22]

      RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ-LÓPEZ A, ELICHE-QUESADA D. Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization[J]. Fuel, 2008,87(7):1195-1206. doi: 10.1016/j.fuel.2007.07.020

    23. [23]

      MÍRIDA-ROBLES J, RODRIGUEZ-CASTELLÓN E, JIMÉNEZ-LÓPEZ A. Characterization of Ni, Mo and Ni-Mo catalysts supported on alumina-pillared α, -zirconium phosphate and reactivity for the thiophene HDS reaction[J]. J Mol Catal A:Chem, 1999,145(1):169-181.

    24. [24]

      CUI G, WANG J, FAN H, SUN X, JIANG Y, WANG S, LIU D, GUI J. Towards understanding the microstructures and hydrocracking performance of sulfided Ni-W catalysts:Effect of metal loading[J]. Fuel Process Technol, 2011,92(12):2320-2327. doi: 10.1016/j.fuproc.2011.07.020

    25. [25]

      VERMAIRE D C, VAN BERGE P C. The preparation of WO3TiO2 and WO3Al2O3 and characterization by temperature-programmed reduction[J]. J Catal, 1989,116(2):309-317. doi: 10.1016/0021-9517(89)90098-5

    26. [26]

      YANG X M, MA H J, XU Z S, XU Y P, TIAN Z J, LIN L W. Hydroisomerization of n-dodecane over Pt/MeAPO-11 (Me=Mg, Mn, Co or Zn) catalysts[J]. Catal Commun, 2007,8(8):1232-1238. doi: 10.1016/j.catcom.2006.11.005

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    7. [7]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    9. [9]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    16. [16]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    17. [17]

      Tingting Wang Chufeng Sun Zhenhua Li Hongling Wang Wenfang Wang Xiaoping Su Lujuan Cui Chenjun Wang . Four-Stage Progressive Teaching Innovation in “Chemical Engineering Principles” for Cultivating Practical Engineering Skills. University Chemistry, 2025, 40(7): 112-118. doi: 10.12461/PKU.DXHX202503052

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    20. [20]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

Metrics
  • PDF Downloads(0)
  • Abstract views(1765)
  • HTML views(220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return