Citation: JIAO Tong, XU Xue-lian, ZHANG Lei, WENG You-yun, WENG Yu-bing, GAO Zhi-xian. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1122-1130. shu

Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production from steam reforming of methanol

  • Corresponding author: ZHANG Lei, lnpuzhanglei@163.com
  • Received Date: 11 August 2020
    Revised Date: 9 September 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China(21673270)the National Natural Science Foundation of China 21673270

Figures(12)

  • CuO/CeO2-ZrO2/SiC monolithic catalysts were prepared by the sol-gel and incipient-wetness impregnation methods, and then used in methanol steam reforming reaction for H2 production. The results indicated that CuO/CeO2-ZrO2/SiC monolithic catalysts showed better activity, higher hydrogen production rate and less CO volume fraction than the CuO/CeO2-ZrO2 bead catalysts. Then the effects of CuO content and coating amount on methanol steam reforming were explored. When the CeO2-ZrO2 mass content was 15%±1% and CuO was 5%±1%, the obtained catalyst showed the best catalytic activity. At a reaction temperature of 340 ℃, water and methanol molar ratio of 1.2, methanol and water gas hourly space velocity of 4840 h-1, methanol conversion reached 86.0%, hydrogen production rate was 1490.0 L/(m3·s), and CO content in reformed gas was 1.55%. The effects of gas hourly space velocity, water and methanol molar ratio and temperature on methanol steam reforming reaction activity were studied by the single factor experiments. The results showed that, as the gas hourly space velocity increased, methanol conversion decreased, hydrogen production rate increased, and the volume fraction of CO in the reformed gas decreased. As the molar ratio of water to methanol increased, both the methanol conversion and the hydrogen production rate increased first and then declined, and the volume fraction of CO in the reformed gas decreased. With the increase of reaction temperature, methanol conversion rate, hydrogen production rate and the content of CO in the reformed gas increased.
  • 加载中
    1. [1]

      HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017,42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229

    2. [2]

      MEI D, FENG Y, QIAN M, CHEN Z Q. An innovative micro-channel catalyst support with a micro-porous surface for hydrogen production via methanol steam reforming[J]. Int J Hydrogen Energy, 2016,41(4):2268-2277. doi: 10.1016/j.ijhydene.2015.12.044

    3. [3]

      MA Y F, GUAN G Q, PHANTHONG P, LI X M, GAO J, HAO X G, WANG Z D, ABUDULA A. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst[J]. Int J Hydrogen Energy, 2014,39(33):18803-18811. doi: 10.1016/j.ijhydene.2014.09.062

    4. [4]

      LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(8):992-999.  

    5. [5]

      WANG Dong-zhe, FENG Xu, ZHANG Jian, CHEN Lin, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Cai-shun, ZHANG Zheng-yi. Effect of promoter M (M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. J Fuel Chem and Technol, 2019,47(10):1251-1257.  

    6. [6]

      YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019,44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254

    7. [7]

      JIANG C J, TRIMM D L, WAINWRIGHT M S. Kinetic study of steam reforming of methanol over copper-based catalysts[J]. Appl Catal A:Gen, 1993,93(2):245-255. doi: 10.1016/0926-860X(93)85197-W

    8. [8]

      JIANG C J, TRIMM D L, WAINWRIGHT M S. Kinetic mechanism for the reaction between methanol and water over a Cu/ZnO/Al2O3 catalyst[J]. Appl Catal A:Gen, 1993,97(2):145-158. doi: 10.1016/0926-860X(93)80081-Z

    9. [9]

      AMPHLETT J C, CREBER K A M, DAVIS J M, MANN R F, PEPPLEY B A, STOKES D M. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells[J]. Int J Hydrogen Energy, 1994,19(2):131-137. doi: 10.1016/0360-3199(94)90117-1

    10. [10]

      LIU N, YUAN Z S, WANG S D, ZHANG C X, WANG S J, LI D Y. Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for methanol auto-thermal reforming process[J]. Int J Hydrogen Energy, 2008,33(6):1643-1651. doi: 10.1016/j.ijhydene.2007.12.058

    11. [11]

      DANWITTAYAKUL S, DUTTA J. Zinc oxide nanorods based catalysts for hydrogen production by steam reforming of methanol[J]. Int J Hydrogen Energy, 2012,37(7):5518-5526. doi: 10.1016/j.ijhydene.2011.12.161

    12. [12]

      TAHAY P, KHANI Y, JABARI M, BAHADORAN F, SAFARI N. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation[J]. Appl Catal A:Gen, 2018,554:44-53. doi: 10.1016/j.apcata.2018.01.022

    13. [13]

      FASANYA O O, AL-HAJRI R, AHMED O U, MYINT M T Z, ATTA A Y, JIBRIL B Y, DUTTA J. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming[J]. Int J Hydrogen Energy, 2019,44(41):22936-22946. doi: 10.1016/j.ijhydene.2019.06.185

    14. [14]

      KHANI Y, BAHADORAN F, SAFARI N, SOLTANALI S, TAHERI S A. Hydrogen production from steam reforming of methanol over Cu-based catalysts:The behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors[J]. Int J Hydrogen Energy, 2019,44(23):11824-11837. doi: 10.1016/j.ijhydene.2019.03.031

    15. [15]

      VERLATO E, BARISON S, CIMINO S, DERGAL F, LISI L, MANCINO G, MUSIANI M, VAZQUEZ-GOMEZ L. Catalytic partial oxidation of methane over nanosized Rh supported on Fecralloy foams[J]. Int J Hydrogen Energy, 2014,39(22):11473-11485. doi: 10.1016/j.ijhydene.2014.05.076

    16. [16]

      BENITO P, NUYTS G, MONTI M, NOLF W D, FORNASARI G, JANSSENS K, SCAVETTA E, VACCARI A. Stable Rh particles in hydrotalcite-derived catalysts coated on FeCrAlloy foams by electrosynthesis[J]. Appl Catal B:Environ, 2015,179:321-332. doi: 10.1016/j.apcatb.2015.05.035

    17. [17]

      AVILA P, MONTES M, MIRO E E. Monolithic reactors for environmental applications:A review on preparation technologies[J]. Chem Eng J, 2005,109(1/3):11-36.  

    18. [18]

      PALMA V, MARTINO M, MELONI E, RICCA A. Novel structured catalysts configuration for intensification of steam reforming of methane[J]. Int J Hydrogen Energy, 2017,42(3):1629-1638. doi: 10.1016/j.ijhydene.2016.06.162

    19. [19]

      LOPEZ E, DIVINS N J, ANZOLA A, SCHBIB S, BORIO D, LLORCA J. Ethanol steam reforming for hydrogen generation over structured catalysts[J]. Int J Hydrogen Energy, 2013,38(11):4418-4428. doi: 10.1016/j.ijhydene.2013.01.174

    20. [20]

      LIU Na, YUAN Zhong-shan, ZHANG Chun-xi, WANG Shu-juan, LI De-yi, WANG Shu-dong. Preparation, characterization and effect of Ce-Zr washcoat on Zn-Cr monolithic catalysts for methanol autothermal reforming[J]. Chin J Catal, 2005,26(12):1078-1082.  

    21. [21]

      LIU Na, WANG Shu-dong, YUAN Zhong-shan, ZHANG Chun-xi, WANG Shu-juan, LI De-yi, FU Gui-zhi. Methanol autothermal reforming for hydrogen generation over monolithic catalyst[J]. CIESC J, 2004,55(S1):90-94.  

    22. [22]

      LIU H T, LI S Q, ZHANG S B, WANG J M, ZHOU G J, CHEN L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008,9(1):51-54.  

    23. [23]

      CUI X T, KAER S K. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming[J]. Int J Hydrogen Energy, 2018,43(27):11952-11968. doi: 10.1016/j.ijhydene.2018.04.142

    24. [24]

      GOU Y Z, WANG H, JIAN K, SHAO C W, WANG X Z. Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres[J]. J Eur Ceram Soc, 2017,37(2):517-522. doi: 10.1016/j.jeurceramsoc.2016.09.023

    25. [25]

      ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053

    26. [26]

      YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(2):179-188.  

    27. [27]

      ZHANG X, SHI P. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2003,194(1/2):99-105.  

    28. [28]

      ZHANG X R, SHI P, ZHAO J X, ZHAO M Y, LIU C T. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003,83(1/3):183-192.  

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(5)
  • Abstract views(1359)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return