Citation: YU Sheng-hui, ZHANG Cheng, ZHANG Xiao-pei, ZHOU An-li, XU Hao, FANG Qing-yan, CHEN Gang. Effect of combustion heat on release and transformation of the sodium during Zhundong coal ash-forming process[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 391-398. shu

Effect of combustion heat on release and transformation of the sodium during Zhundong coal ash-forming process

  • Corresponding author: ZHANG Cheng, chengzhang@mail.hust.edu.cn
  • Received Date: 26 December 2017
    Revised Date: 28 February 2018

    Fund Project: The project was supported by National Natural Science Foundation of China (51676076), National Program of International Science and Technology Cooperation (2015DFA60410) and Graduates' Innovation Fund of HUST (5003120003)National Natural Science Foundation of China 51676076National Program of International Science and Technology Cooperation 2015DFA60410Graduates' Innovation Fund of HUST 5003120003

Figures(9)

  • As a typical Zhundong coal, Wucaiwan coal was chosen as the object of the investigation. The combustion ash with coal sample and the reheated ash with ashing sample at 400℃ were prepared in a muffle furnace. K-type thermocouple was used to measure the temperature, XRF and XRD were used to investigate the composition of ash, and the sequential chemical extraction was used to examine the modes of occurrence of Sodium. The results show that the combustion ash and the reheated ash have marked differences in composition and melting points, sodium content in the reheated ash is higher than that in the combustion ash and the melting temperature of the reheated ash is lower than that in the combustion ash. With the increase of temperature, the total content of sodium decreases obviously, the water-soluble and ammonia-soluble sodium decreases rapidly, while the HCl soluble sodium increases first and then decreases and the insoluble sodium increases. The sodium released is mainly soluble. Heating temperature and time have an influence on the releasing of sodium, and the combustion reaction leads to the temperature on particle surface higher than surrounding temperature by 200℃, which is the main cause of releasing more sodium.
  • 加载中
    1. [1]

      CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-zhong, LÜ Jun-fu. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013,41(7):832-838.  

    2. [2]

      GUO Shuai, JIANG Yun-feng, XIONG Qing-an, SONG Shuang-shuang, ZHAO Jian-tao, FANG Yi-tian. Release and transformation behaviors of sodium species with different occurrence modes during pyrolysis of Zhundong coal[J]. J Fuel Chem Technol, 2017,45(3):1-8.  

    3. [3]

      ZHANG Xiao-pei, ZHANG Cheng, YU Sheng-hui, LI Xin, FENG Xiao-fei, MA Ya-fei, CHEN Gang. Changes of Zhundong coal properties by hydrothermal upgrading and its impacts on CO2 gasification[J]. J Fuel Chem Technol, 2017,45(10):1185-1190. doi: 10.3969/j.issn.0253-2409.2017.10.005 

    4. [4]

      SUN Xin, ZHAO Bin, WANG Zi-bing, LIANG Jing-long, LI Hui. Effect of H2O(g) and SO2(g) on the volatilization and transformation of sodium during Xinjiang high-sodium coal combustion[J]. J Fuel Chem Technol, 2017,45(10):1178-1184. doi: 10.3969/j.issn.0253-2409.2017.10.004

    5. [5]

      QI Xiao-bin, SONG Guo-liang, SONG Wei-jian, LÜ Qing-gang. Mineral transformation behavior of Zhundong coal during circulating fludized bed gasification[J]. J Combust Sci Technol, 2017,23(1):29-35.  

    6. [6]

      WANG Zhi-hua, LI Qian, LIU Jing, HUANG Zhen-yu, ZHOU Zhi-jun, ZHOU Jun-hu, CEN Ke-fa. Occurrence of alkali metals in Zhundong coal and its migration during pyrolysis process[J]. Proc CSEE, 2014,34(S1):130-135.  

    7. [7]

      CHAKRAVARTY S, MOHANTY A, BANERJEE A, TRIPATHY R, MANDAL G K, BASARIYA M R, SHARMA M. Composition, mineral matter characteristics and ash fusion behavior of some Indian coals[J]. Fuel, 2015,150:96-101. doi: 10.1016/j.fuel.2015.02.015

    8. [8]

      CHEN Guan-yi, WANG Qin, YAN Bei-bei. Mobility and enrichment of trace elements in a coal-fired circulating fluidized bed boiler[J]. J Fuel Chem Technol, 2013,41(9):1050-1055.  

    9. [9]

      CHEN H, PAN P, JIAO J, WANG Y, ZHAO Q. Low-temperature ash deposition and dewpoint corrosion of a coal-fired travelling grate boiler[J]. Appl Therm Eng, 2017,117:752-761. doi: 10.1016/j.applthermaleng.2017.02.052

    10. [10]

      MO Xin, CAI Run-xia, LU Jun-fu. Analysis of non-uniform distribution of gas-solid flow in the 600MW(e) CFB boiler based on the non-uniform distribution of returning ash temperature[J]. Proc CSEE, 2016,36(8):2175-2180.  

    11. [11]

      MODLINSKI N, HARDY T. Development of high-temperature corrosion risk monitoring system in pulverized coal boilers based on reducing conditions identification and CFD simulations[J]. Appl Energ, 2017,204:1124-1137. doi: 10.1016/j.apenergy.2017.04.084

    12. [12]

      ZHANG Chuan-mei, JIN Jing, ZHANG Hao, JIANG Jie, GAO Wen-jing, DONG Zhen. Numerical simulation on flow and temperature field of multi-phase flow in convective waste heat boiler of pressurized coal gasifiers[J]. J Power Eng, 2013,33(6):424-429.  

    13. [13]

      LIU Jing, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014,42(3):316-322.  

    14. [14]

      HE Jin-qiao, CHEN Dong-lin, YAN Xiao-zhong. Slagging characteristics of low alkailine-aild ratio coal ash on carborundumbased refractory liner under high temperature calcination[J]. J China Coal Soc, 2011,36(6):1022-1026.  

    15. [15]

      TIAN Si-da, ZHUO Yu-qun, KANG Zhi-zhong, FANG Yong-xu. Experimental study on distribution of mineral matter relating to slagging in light coal fractions[J]. J Eng Therm, 2016,37(8):1796-1801.  

    16. [16]

      WANG Dong-xu, QI Chao, WANG Yang, LI Wen-yan, XIAO Hai-ping, KANG Zhi-zhong. Effect of CaO content on the ash fusibility of high sodium coal[J]. J Fuel Chem Technol, 2017,45(9):1025-1034.  

    17. [17]

      LIN Xiong-chao, YANG Yuan-ping, XU Rong-sheng, LI Shou-yi, YUE Wen-fei, WANG Yong-gang. Occurrence and transformation behavior of AAEMs in the flotation fraction of a typical Xinjiang coal[J]. J Fuel Chem Technol, 2017,45(2):157-164.  

    18. [18]

      LI G, WANG C, YAN Y, JIN X, LIU Y, CHE D. Release and transformation of sodium during combustion of Zhundong coals[J]. J Energy Inst, 2016,89(1):48-56. doi: 10.1016/j.joei.2015.01.011

    19. [19]

      CHEN X, KONG L, BAI J, BAI Z, LI W. Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition[J]. J Fuel Chem Technol, 2016,44(3):263-272. doi: 10.1016/S1872-5813(16)30015-9

    20. [20]

      SHEN J, HU H, XU M, LIU H, XU K, ZHANG X, YAO H, NARUSE I. Interactions between molten salts and ash components during Zhundong coal gasification in eutectic carbonates[J]. Fuel, 2017,207:365-372. doi: 10.1016/j.fuel.2017.06.079

    21. [21]

      MISHRA V, BHOWMICK T, CHAKRAVARTY S, VARMA A K, SHARMA M. Influence of coal quality on combustion behaviour and mineral phases transformations[J]. Fuel, 2016,186:443-455. doi: 10.1016/j.fuel.2016.08.092

    22. [22]

      JORDAN C A, AKAY G. Speciation and distribution of alkali, alkali earth metals and major ash forming elements during gasification of fuel cane bagasse[J]. Fuel, 2012,91(1):253-263. doi: 10.1016/j.fuel.2011.05.031

    23. [23]

      ZHOU C, LIU G, YAN Z, FANG T, WANG R. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel, 2012,97:644-650. doi: 10.1016/j.fuel.2012.02.027

    24. [24]

      ZHANG H, GUO X, ZHU Z. Effect of temperature on gasification performance and sodium transformation of Zhundong coal[J]. Fuel, 2017,189:301-311. doi: 10.1016/j.fuel.2016.10.097

    25. [25]

      LIU S, QIAO Y, LU Z, GUI B, WEI M, YU Y, XU M. Release and transformation of sodium in kitchen waste during torrefaction[J]. Energy Fuels, 2014,28(3):1911-1917. doi: 10.1021/ef500066b

    26. [26]

      KUMARI G, VAIRAKANNU P. Laboratory scale studies on CO2 oxy-fuel combustion in the context of underground coal gasification[J]. J CO2 Util, 2017,21:177-190. doi: 10.1016/j.jcou.2017.06.021

    27. [27]

      SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LU Qing-gang. Sodium transformation law of Zhundong coal during gasification[J]. J China Coal Soc, 2016,41(2):490-496.  

    28. [28]

      ZHANG J, HAN C-L, YAN Z, LIU K, XU Y, SHENG C D, PAN W P. The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy Fuels, 2001,15(4):786-793. doi: 10.1021/ef000140u

  • 加载中
    1. [1]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    2. [2]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    3. [3]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    4. [4]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    11. [11]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    14. [14]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    15. [15]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    18. [18]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    19. [19]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    20. [20]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

Metrics
  • PDF Downloads(6)
  • Abstract views(740)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return