Effect of Ce modified Co/SEP catalyst on hydrogen production via ethanol steam reforming
- Corresponding author: WANG Chun-sheng, wangchunshengaust@163.com CHEN Ming-qiang, mqchen@aust.edu.cn
Citation:
WANG Chun-sheng, WANG Yi-shuang, CHEN Ming-qiang, TANG Zhi-yuan, ZHANG Han, YANG Zhong-lian, WANG Jun. Effect of Ce modified Co/SEP catalyst on hydrogen production via ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(5): 558-565.
SOHN H, OZKAN U S. Cobalt-based catalysts for ethanol steam reforming:An overview[J]. Energy Fuels, 2016,30(7):5309-5322. doi: 10.1021/acs.energyfuels.6b00577
LI D, LI Y, GONG J. Catalytic reforming of oxygenates:State of the art and future prospects[J]. Chem Rev, 2016,116(19):11529-11653. doi: 10.1021/acs.chemrev.6b00099
HU En-yuan, YAN Chang-feng, CAI Chi-liu, HU Rong-rong. Experimental research on hydrogen production by catalytic steam reforming of bio-oil aqueous fraction[J]. J Fuel Chem Technol, 2009,37(2):177-182. doi: 10.3969/j.issn.0253-2409.2009.02.010
DAN M, MIHET M, TASNADI-ASZTALOS Z, IMRE-LUCACI A, KATONA G, LAZAR M D. Hydrogen production by ethaol steam reforming on nickel catalysts:Effect of support modification by CeO2 and La2O3[J]. Fuel, 2015,147:260-268. doi: 10.1016/j.fuel.2015.01.050
ARSLAN A, DOǦU T. Effect of calcination/reduction temperature of Ni impregnated CeO2-ZrO2 catalysts on hydrogen yield and coke minimization in low temperature reforming of ethanol[J]. Int J Hydrogen Energy, 2016,41(38):16752-16761. doi: 10.1016/j.ijhydene.2016.07.082
CASANOVAS A, ROIG M, LEITENBURG C D, TROVARELLI A, LLORCA J. Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na[J]. Int J Hydrogen Energy, 2010,35(15):7690-7698. doi: 10.1016/j.ijhydene.2010.05.099
DA SILVA A L M, DEN BREEJEN J P D, MATTOS L V, BITTER J H, DE JONG K P, NORONHA B F. Cobalt particle size effects on catalytic performance, for ethanol steam reforming-Smaller is better[J]. J Catal, 2014,318:67-74. doi: 10.1016/j.jcat.2014.07.020
SUN J, WANG Y, LI J, XIAO G, ZHANG L, LI H, CHENG Y, SUN C, CHENG Z, DONG Z, CHEN L. H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres[J]. Int J Hydrogen Energy, 2010,35(7):3087-3091. doi: 10.1016/j.ijhydene.2009.07.020
LONERGAN W W, VLACHOS D G, CHEN J. Correlating extent of Pt-Ni bond formation with low-temperature hydrogenation of benzene and 1, 3-butadiene over supported Pt/Ni bimetallic catalysts[J]. J Catal, 2010,271(2):239-250.
VAGIA E C, LEMONIDOU A A. Investigations on the properties of ceria-zirconia-supported Ni and Rh catalysts and their performance in acetic acid steam reforming[J]. J Catal, 2010,269(2):388-396.
DEMSASH H D, KONDAMUDI K V K, UPADHYAYULA R, MOHAN R. Ruthenium doped nickel-alumina-ceria catalyst in glycerol steam reforming[J]. Fuel Process Technol, 2018,169:150-156. doi: 10.1016/j.fuproc.2017.09.017
HE L, HU S, JIAN G, LIAO G, CHEN X, HAN H, XIAO L, REN Q, WANG Y, SU S, XIANG J. Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts:Roles of catalyst supports[J]. Fuel Process Technol, 2018,176:7-14. doi: 10.1016/j.fuproc.2018.03.007
OCHOA A, ARREGI A, AMUTIO M, GAYUBO A G, OLAZAR M, BILBAO J, CASTAÑO P. Coking and sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles[J]. Appl Catal B:Environ, 2018,233:289-300. doi: 10.1016/j.apcatb.2018.04.002
HE L, HU S, JIANG L, SYED-HASSAN S S A, WANG Y, XU K, SU S, XIANG J, XIAO L, CHI H, CHEN X. Opposite effects of self-growth amorphous carbon and carbon nanotubes on the reforming of toluene with Ni/α-Al2O3 for hydrogen production[J]. Int J Hydrogen Energy, 2017,42:14439-144438. doi: 10.1016/j.ijhydene.2017.04.230
BARROSO M N, GOMEZ M F, ARRÚA L A, ABELLO M C. Co catalysts modified by rare earths(La, Ce or Pr) for hydrogen production[J]. Int J Hydrogen Energy, 2014,39(16):8712-8719. doi: 10.1016/j.ijhydene.2013.12.043
TURCZYNIAK S, TESCHNER D, MACHOCKI A, ZAFEIRATOS S. Effect of the surface state on the catalytic performance of a Co/CeO2 ethanol steam-reforming catalyst[J]. J Catal, 2016,340:321-330. doi: 10.1016/j.jcat.2016.05.017
LIN S S-Y, KIM D H, ENGELHARD M H, HA S Y. Water-induced formation of cobalt oxides over supported cobalt/ceria-zirconia catalysts under ethanol-steam conditions[J]. J Catal, 2010,273(2):229-235.
LIU S, CHEN M, CHU L, YANG Z, ZHU C, WANG J, CHENG M. Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni-Mo supported on modified sepiolite catalysts[J]. Int J Hydrogen Energy, 2013,38(10):3948-3955. doi: 10.1016/j.ijhydene.2013.01.117
LIANG T, WANG Y, CHEN M, YANG Z, LIU S, ZHOU Z, LI X, CHENG M. Steam reforming of phenol-ethanol to produce hydrogen over bimetallic Ni-Cu catalysts supported on sepiolite[J]. Int J Hydrogen Energy, 2017,42:28233-28246. doi: 10.1016/j.ijhydene.2017.09.134
CHEN Ming-qiang, LIANG Tian, WANG Yi-shuang, YANG Zhong-lian, LI Xiao-jing, ZHOU Zhong-shan. Hydrogen Production via Catalytic Steam Reforming of the Mixture of Phenol and Ethanol over Ni-Cu/Sepolite Catalyst[J]. J Anhui Univ Sci Technol (Nat Sci), 2017, (6): 46-51, 75.
WANG Yi-shuang, CHEN Ming-qiang, LIU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via catalytic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. J Fuel Chem Technol, 2015,43(12):1470-1475. doi: 10.3969/j.issn.0253-2409.2015.12.010
DOBOSZ J, CICHY M, ZAWADZKI M, BOROWIECKI T. Glycerol steam reforming over calcium hydroxyapatite supported cobalt and cobalt-cerium catalysts[J]. J Energy Chem, 2018,27(2):404-412. doi: 10.1016/j.jechem.2017.12.004
SONG H, OZKAN US. The role of impregnation medium on the activity of ceria-supported cobalt catalysts for ethanol steam reforming[J]. J Mol Catal A:Chem, 2010,318(1):21-29.
LIN S S-Y, DAIMON H, HA S Y. Co/CeO2-ZrO2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming[J]. Appl Catal A:Gen, 2009,366(2):252-261. doi: 10.1016/j.apcata.2009.07.010
CARVALHO F L S, ASENCIOS Y J O, BELLIDO J D A, ASSAF E M. Bio-ethanol steam reforming for hydrogen production over Co3O4/CeO2 catalysts synthesized by one-step polymerization method[J]. Fuel Process Technol, 2016,142:182-191. doi: 10.1016/j.fuproc.2015.10.010
MARCOS F C F, LUCREDIO A F, ASSAF E M. Effects of adding basic oxides of La and/or Ce to SiO2-supported Co catalysts for ethanol steam reforming[J]. RSC Adv, 2014,4:43839-43849. doi: 10.1039/C4RA04157G
HU X, LU G. Acetic acid steam reforming to hydrogen over Co-Ce/Al2O3and Co-La/Al2O3 catalysts-The promotion effect of Ce and La addition[J]. Catal Commun, 2011,12(1):50-53.
LI L, TANG D, SONG Y, JIANG B, ZHANG Q. Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts[J]. Energy, 2018,149:937-943. doi: 10.1016/j.energy.2018.02.116
ARAIZA D G, GÓMEZ-CORTÉS A, DÍAZ G. Effect of ceria morphology on the carbon deposition during steam reforming of ethanol over Ni/CeO2catalysts[J]. Catal Today, 2018. doi: 10.1016/j.cattod.2018.03.016
ZOU X, CHEN T, ZHANG P, CHEN D, HE J, DANG Y, MA Z, CHEN Y, TOLOUEINIA P, ZHU C, XIE J, LIU H, SUIB S L. High catalytic performance of Fe-Ni/Palygorskite in the steam reforming of toluene for hydrogen production[J]. Appl Energy, 2018(226):827-837.
YANG Yu, MA Jian-xin. Effect of nickel loading on the production of hydrogen via ethanol steam reforming[J]. J Fuel Chem Technol, 2006,34(3):337-342. doi: 10.3969/j.issn.0253-2409.2006.03.016
BEPARI S, BASU S, PRADHAN N C, DALAI A Y. Steam reforming of ethanol over cerium-promoted Ni-Mg-Al hydrotalcite catalysts[J]. Catal Today, 2017,291:47-57. doi: 10.1016/j.cattod.2017.01.027
WANG S, ZHANG F, CAI Q, LI X, ZHU L, WANG Q, LUO Z. Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst[J]. Int J Hydrogen Energy, 2014,39(5):2018-2025. doi: 10.1016/j.ijhydene.2013.11.129
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Yongmei Liu , Lisen Sun , Yongmei Hao , Zhanxiang Liu , Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
(a): calcined samples; (b): reduced samples
(a): Co/SEP; (b): Co-Ce/SEP
a: Co-Ce/SEP; b: Co/SEP; c: SEP