Citation: ZHANG Peng-qi, YANG Qi-qi, TU Ka-bin, WANG Yue-lun, WANG Zu-wei, LIU Lin-lin, ZHANG Hong. Research on the uneven ash melting behavior of pulverized Jincheng coal[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 8-14. shu

Research on the uneven ash melting behavior of pulverized Jincheng coal

  • Corresponding author: ZHANG Hong, hzhang@cumt.edu.cn
  • Received Date: 19 July 2017
    Revised Date: 9 November 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China and Shanxi Low Carbon Coal Foundation(U1510106)National Natural Science Foundation of China and Shanxi Low Carbon Coal Foundation U1510106

Figures(9)

  • According to the contradiction between ash melting theory and practice, an uneven melting theory was proposed. A typical Jincheng coal from Shanxi, China, was selected, which was ground into the particle size similar to the industrial use. It was separated into different density fractions through float and sink tests, and its chemical composition and mineral composition were analyzed with XRF and XRD, respectively. Ash fusion temperatures (AFTs) under light reducing atmosphere and the pressure-drop temperature(PDT) were tested. SEM-EDX was also employed to observe the melting behavior. It is found that the softening temperature of Jincheng coal is 1501℃, while that of its density fractions changes from 1292℃ to 1600℃. The sintering temperature changes from 833℃ to 943℃, while that of the raw coal ash was 885℃. The study of mechanism shows that the difference of melting and sintering behaviors is caused by the segregation of chemical composition in different density samples, mainly Al2O3, Fe2O3 and SO3.
  • 加载中
    1. [1]

      BARTELS M, LIN W, NIJENHUIS J. Agglomeration in fluidized beds at high temperatures:Mechanisms, detection and prevention[J]. Prog Energy Combust Sci, 2008,34(5):633-666. doi: 10.1016/j.pecs.2008.04.002

    2. [2]

      LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Exploration on slagging mechanism of Jincheng anthracite during fluidized-bed gasification[J]. J Taiyuan Univ Technol, 2010,41(5):666-669.  

    3. [3]

      ZHOU Yong-gang, FAN Jian-yong, LI Pei, WANG Bing-hui, ZHAO Hong. Slagging characteristics of high alkalis Zhundong coal[J]. J Zhejiang Univ(Eng Sci), 2014,48(11):2061-2065.  

    4. [4]

      YU D, XU M, SUI J. Effect of coal particle size on the proximate composition and combustion properties[J]. Thermochim Acta, 2005,439(1/2):103-109.  

    5. [5]

      LIU Xiao-wei, YAO Hong, CAI You-min, YU Dun-xi, ZHOU Ke, XU Ming-hou. Effect of density fractionation on formation characteristics of particulate matter during coal combustion[J]. J Chem Ind Eng(China), 2007,58(10):2567-2572. doi: 10.3321/j.issn:0438-1157.2007.10.026

    6. [6]

      CAI You-min, YAO Hong, LIU Xiao-wei, XU Ming-hou. A study of the mineral distribution and combustion characteristics of pulverized coal of different densities[J]. J Eng Therm Energy Power, 2007,22(6):651-655.  

    7. [7]

      VAN DYK J C, BENSON S A, LAUMB M L. Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel, 2009,88(6):1057-1063. doi: 10.1016/j.fuel.2008.11.034

    8. [8]

      WU L, XU M H, WANG S F. Study of different densities pulverized coal combustion characteristics under O2/CO2 atmosphere[J]. J Eng Therm, 2010,31(10):1789-1792.  

    9. [9]

      ZHANG H, MO Y, SUN M. Determination of the mineral distribution in pulverized coal using densitometry and laser particle sizing[J]. Energy Fuels, 2005,19(6):2261-2267. doi: 10.1021/ef050201u

    10. [10]

      ZHANG Hong, HU Guang-zhou, FANG Jia-xin, PU Wen-xiu, MO Yan-xue, HA Si, LI Ying. Study on the distribution of minerals in pulverized coals[J]. J Eng Therm, 2008,29(7):1231-1235.  

    11. [11]

      HAO Juan, ZHANG Hong, CHEN Jia-bao, LI Ya-nan. Mineral distribution of industry blended coal powder[J]. J Zhejiang Univ(Eng Sci), 2012,46(4):756-763.  

    12. [12]

      ALOTOOM A Y, BRYANT G W, ELLIOTT L K. Experimental options for determining the temperature for the onset of sintering of coal ash[J]. Energy Fuels, 1999,14(1)41.  

    13. [13]

      SONG W J, TANG L H, ZHU X D. Effect of coal ash composition on ash fusion temperatures[J]. Energy Fuels, 2010,24(1):182-189. doi: 10.1021/ef900537m

    14. [14]

      CHENG Xiang-long, WANG Yong-gang, ZHANG Rong, BI Ji-cheng. Effect of low temperature eutectics on coal ash fusion temperatures[J]. J Fuel Chem Technol, 2016,44(9):1043-1050.  

    15. [15]

      LI J, ZHU M, ZHANG Z. Effect of coal blending and ashing temperature on ash sintering and fusion characteristics during combustion of Zhundong lignite[J]. Fuel, 2017,195:131-142. doi: 10.1016/j.fuel.2017.01.064

    16. [16]

      DAI Bai-qian, WU Xiao-jiang, ZHANG Zhong-xiao. Transition behavior of main elements in fly ash during high alkali coal combution[J]. Chin J Power Eng, 2014,34(6):438-442.  

    17. [17]

      SCHEPPER M D, HEEDE P V D, ARVANITI E C. Sulfates in completely recyclable concrete and the effect of CaSO4 on the clinker mineralogy[J]. Constr Build Mater, 2017,137:300-306. doi: 10.1016/j.conbuildmat.2017.01.127

  • 加载中
    1. [1]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    2. [2]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    13. [13]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    14. [14]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

Metrics
  • PDF Downloads(5)
  • Abstract views(2234)
  • HTML views(469)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return