Research on electro-catalytic steam reforming of methane with modified Ni/γ-Al2O3 catalysts
- Corresponding author: LU Qiang, qianglu@mail.ustc.edu.cn
Citation:
HOU Yue, ZHANG Rong-jun, LU Qiang, YANG Shao-xia, LI Ming-feng. Research on electro-catalytic steam reforming of methane with modified Ni/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(4): 489-499.
LULIANELLI A, LIGUORI S, WILCOX J, BASILE A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology:A review[J]. Catal Rev, 2016,13:1-35.
WANG Dong-xu, XIAO Xian-bin, LI Wen-yan. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chem Ind Eng Prog, 2017,36(5):1658-1662.
SUN Jie, SUN Chun-wen, LI Ji-gang, ZHOU Tian, DONG Zhong-chao, CHEN Li-quan. Research on the steam reforming of methane[J]. Chin Eng Sci, 2013,15(2):98-106.
CHEN Xi. Preparation of Ni-based catalysts and application in steam reforming of methane[D]. Liaoning: Dalian University of Technology, 2014.
ARKATOVA L A. The deposition of coke during carbon dioxide reforming of methane over intermetallides[J]. Catal Today, 2010,157:170-176. doi: 10.1016/j.cattod.2010.03.003
IGLESIAS I, BARONETTI G, MARINO F. Nickel-based doped ceria-supported catalysts for steam reforming of methane at mild conditions[J]. Energy Sources, 2017,39(2):129-133. doi: 10.1080/15567036.2016.1214639
LIAN J, FANG X Z, LIU W M, HUANG Q, SUN Q K, WANG H M, WANG X, ZHOU W F. Ni Supported on LaFeO3 perovskites for methane steam reforming:On the promotional effects of plasma treatment in H2-Ar atmosphere[J]. Top Catal, 2017. doi: 10.1007/s11244-017-0748-6
ZHAO Yun-li, LÜ Yong-kang, CHANG Li-ping, BAO Wei-ren. Effects of MgO and CaO on properties of Ni/γ-Al2O3 catalyst for the reforming of methane and steam[J]. J Fuel Chem Technol, 2010,38(2):218-222.
ALI S, AL-MARRI M G, ABDELMONEIM A, KUMAR A M, KHADER M. Catalytic evaluation of nickel nanoparticles in methane steam reforming[J]. Int J Hydrogen Energy, 2016,41:22876-22885. doi: 10.1016/j.ijhydene.2016.08.200
CHEN Y Q, YUAN L X, YE T Q, QIU S B, ZHU X F, TORIMOTO Y, YAMAMOTO M, LI Q X. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid[J]. Int J Hydrogen Energy, 2009,34(4):1760-1770. doi: 10.1016/j.ijhydene.2008.12.044
YE T Q, YUAN L X, CHEN Y Q, KAN T, TU J, ZHU X F, TORIMOTO Y, YAMAMOTO M, LI Q X. High efficient production of hydrogen from bio-oil using low-temperature electrochemical catalytic reforming approach over NiCuZn-Al2O3 catalyst[J]. Catal Lett, 2009,127(3/4):323-333.
YUAN L X, CHEN Y Q, SONG C F, YE T Q, GUO Q X, ZHU X F, TORIMOTO Y, LI Q X. Electrochemical catalytic reforming of oxygenated-organic compounds:A highly efficient method for production of hydrogen from bio-oil[J]. Chem Commun, 2008,41:5215-5217.
KAN T, XIONG J X, LI X L, YE T Q, YUAN L X, TORIMOTO Y, YAMAMOTO M, LI Q X. High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming[J]. Int J Hydrogen Energy, 2010,35(2):518-532. doi: 10.1016/j.ijhydene.2009.11.010
TAO Jun. Research on the catalytic conversion of biomass tar model compounds using Ni-based catalysts[D]. Beijing: North China Electric Power University, 2015.
YUAN L X, YE T Q, GUO Q X, TORIMOTO Y, YAMAMOTO M, LI Q X. Hydrogen production from the current-enhanced reforming and decomposition of ethanol[J]. Energy Fuels, 2009,23(6):3103-3112. doi: 10.1021/ef801131a
HU X, LU G X. Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst[J]. J Mol Catal A:Chen, 2007,261(1):43-48. doi: 10.1016/j.molcata.2006.07.066
HU X, LU G X. Syngas production by CO2 reforming of ethanol over Ni/Al2O3 catalyst[J]. Catal Commun, 2009,10(13):1633-1637. doi: 10.1016/j.catcom.2009.04.030
JIANG Hong-tao, HUA Wei, JI Jian-bing. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog Chem, 2013,25(5):859-868.
FANG Xiu-zhong. The preparation of highly active and coke resistant Ni-based catalysts for methane reforming for hydrogen production[D]. Jiangxi: Nanchang University, 2016.
PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev, 2014,21:7813-7837.
MA Z, JIANG Q Z, WANG X, ZHANG W G, MA Z F. CO2 reforming of dimethyl ether over Ni/γ-Al2O3 catalyst[J]. Catal Commun, 2012,17:49-53. doi: 10.1016/j.catcom.2011.10.014
LUISETTO I, SARNO C, FELICIS D D, BASOLI F, BATTOCCHIO C, TUTI S, LICOCCIA S, BARTOLOMEO E D. Ni supported on γ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors[J]. Fuel Process Technol, 2017,158:130-140. doi: 10.1016/j.fuproc.2016.12.015
ZHAO Yun-li. Study of methane catalytic reforming to hydrogen on nickel-based catalysts[D]. Taiyuan: Taiyuan University of Technology, 2009.
YUAN Li-xia. Basic application research on the hydrogen production from bio-oil and ethanol by electrochemical catalytic steam reforming[D]. Anhui: University of Science and Technology of China, 2008.
LI Chun-yi, YU Chang-chun, SHEN Shi-kong. Ni/Al2O3 catalyst for partial oxidation of CH4 to syngas[J]. Chin J Catal, 2001,22:377-382. doi: 10.3321/j.issn:0253-9837.2001.04.016
WU H J, PANTALEO G, PAROLA V L, VENEZIA A M, COLLARD X, APRILE C, LIOTTA L. Bi-and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M=Ce or Mg) oxides for methane dry reforming:Au and Pt additive effects[J]. Appl Catal B:Environ, 2014,156-157:350-361. doi: 10.1016/j.apcatb.2014.03.018
HOFFER B W, LANGEVELD A D, JANESSENS J P, BONNÈ R L C, LOK C M, MOOLIJIN J A. Stability of highly dispersed Ni/Al2O3 catalysts:Effects of pretreatment[J]. J Catal, 2000,192:432-440. doi: 10.1006/jcat.2000.2867
MIRYAM G C, CRISTINA J G, BEATRIZ D R, JOSE I G, Rubén L F. Effect of Ni/Al molar ratio on the performance of substoichiometric NiAl2O4 spinel-based catalysts for partial oxidation of methane[J]. Appl Catal B:Environ, 2017,209:128-138. doi: 10.1016/j.apcatb.2017.02.063
NESBITT H W, LEGRANG D, BANCOF G M. Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators[J]. Phys Chem Minerals, 2000,27:357-366. doi: 10.1007/s002690050265
LI Chun-yi, YU Chang-chun, SHEN Shi-kong. Ni/Al2O3 catalyst for partial oxidation of CH4 to syngas[J]. Chin J Catal, 2001,22:377-382. doi: 10.3321/j.issn:0253-9837.2001.04.016
GUCZI L, STEFLER G, GESZTI O, SAJO I, PASZTI Z, TOMPOS A, SCHAY Z. Methane dry reforming with CO2:A study on surface carbon species[J]. Appl Catal A:Gen, 2010,375:236-246. doi: 10.1016/j.apcata.2009.12.040
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
(S/C=3, space velocity 10000 h-1)
(S/C=3, space velocity 10000 h-1)
(temperature 700 ℃, space velocity 10000 h-1)
(S/C=3, space velocity 10000 h-1)
(a): 700 ℃; (b): 650 ℃
Ⅰ: fresh catalyst (non-reduced); Ⅱ: spent catalyst (current 0 A); Ⅲ: spent catalyst (current 4.5 A)
Ⅰ: fresh catalyst; Ⅱ: spent catalyst (current 0 A); Ⅲ: spent catalyst (current 4.5 A)
Ⅰ: spent catalyst (current 0 A); Ⅱ: spent catalyst (current 4.5 A)