Citation: HOU Yue, ZHANG Rong-jun, LU Qiang, YANG Shao-xia, LI Ming-feng. Research on electro-catalytic steam reforming of methane with modified Ni/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 489-499. shu

Research on electro-catalytic steam reforming of methane with modified Ni/γ-Al2O3 catalysts

  • Corresponding author: LU Qiang, qianglu@mail.ustc.edu.cn
  • Received Date: 21 September 2017
    Revised Date: 18 January 2018

    Fund Project: Beijing Nova Program Z171100001117064Fundamental Research Funds for the Central Universities 2016YQ05Fundamental Research Funds for the Central Universities 2015ZZD02The project was supported by Fundamental Research Funds for the Central Universities (2016YQ05, 2015ZZD02), Beijing Nova Program (Z171100001117064) and State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)

Figures(8)

  • A novel electro-catalytic technique for catalytic methane steam reforming was developed. Based on the conventional industrial Ni-based catalyst, aseries of catalysts, including Ni/γ-Al2O3, Ni-MgO/γ-Al2O3 and Ni-CaO/γ-Al2O3, were prepared using incipient wetness impregnation method with Ni as the active component, γ-Al2O3 as the carrier, and MgO or CaO as the promoter. Experiments were performed to investigate the effects of electric current intensity, reforming temperature, and molar ratio of water vapor to methane (water/carbon ratio, S/C) on CH4 conversion, H2 yield, CO selectivity and catalyst stability. The results indicated that the electro-catalytic technique had good adaptability, and the introduction of electric current could improve the CH4 conversion and increase the H2 yield. Such effects were more intensive at lower reforming temperatures. Among the three catalysts, Ni-CaO/γ-Al2O3 catalyst exhibited the best catalytic efficiency, with the CH4 conversion over 95% under conditions of 4.5 A, S/C of 3, and 700℃. Stability tests of the catalysts showed that the electric current could improve the stability of catalysts and delay the deactivation caused by coke deposition. The characterization results proved that the presence of electric current enhanced the reduction degree of NiO in the catalyst and inhibited NiCx conversion to graphite carbon, resulting the delay of catalyst deactivation caused by carbon deposition over reactive sites.
  • 加载中
    1. [1]

      LULIANELLI A, LIGUORI S, WILCOX J, BASILE A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology:A review[J]. Catal Rev, 2016,13:1-35.  

    2. [2]

      WANG Dong-xu, XIAO Xian-bin, LI Wen-yan. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chem Ind Eng Prog, 2017,36(5):1658-1662.  

    3. [3]

      SUN Jie, SUN Chun-wen, LI Ji-gang, ZHOU Tian, DONG Zhong-chao, CHEN Li-quan. Research on the steam reforming of methane[J]. Chin Eng Sci, 2013,15(2):98-106.  

    4. [4]

      CHEN Xi. Preparation of Ni-based catalysts and application in steam reforming of methane[D]. Liaoning: Dalian University of Technology, 2014.

    5. [5]

      ARKATOVA L A. The deposition of coke during carbon dioxide reforming of methane over intermetallides[J]. Catal Today, 2010,157:170-176. doi: 10.1016/j.cattod.2010.03.003

    6. [6]

      IGLESIAS I, BARONETTI G, MARINO F. Nickel-based doped ceria-supported catalysts for steam reforming of methane at mild conditions[J]. Energy Sources, 2017,39(2):129-133. doi: 10.1080/15567036.2016.1214639

    7. [7]

      LIAN J, FANG X Z, LIU W M, HUANG Q, SUN Q K, WANG H M, WANG X, ZHOU W F. Ni Supported on LaFeO3 perovskites for methane steam reforming:On the promotional effects of plasma treatment in H2-Ar atmosphere[J]. Top Catal, 2017. doi: 10.1007/s11244-017-0748-6

    8. [8]

      ZHAO Yun-li, LÜ Yong-kang, CHANG Li-ping, BAO Wei-ren. Effects of MgO and CaO on properties of Ni/γ-Al2O3 catalyst for the reforming of methane and steam[J]. J Fuel Chem Technol, 2010,38(2):218-222.  

    9. [9]

      ALI S, AL-MARRI M G, ABDELMONEIM A, KUMAR A M, KHADER M. Catalytic evaluation of nickel nanoparticles in methane steam reforming[J]. Int J Hydrogen Energy, 2016,41:22876-22885. doi: 10.1016/j.ijhydene.2016.08.200

    10. [10]

      CHEN Y Q, YUAN L X, YE T Q, QIU S B, ZHU X F, TORIMOTO Y, YAMAMOTO M, LI Q X. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid[J]. Int J Hydrogen Energy, 2009,34(4):1760-1770. doi: 10.1016/j.ijhydene.2008.12.044

    11. [11]

      YE T Q, YUAN L X, CHEN Y Q, KAN T, TU J, ZHU X F, TORIMOTO Y, YAMAMOTO M, LI Q X. High efficient production of hydrogen from bio-oil using low-temperature electrochemical catalytic reforming approach over NiCuZn-Al2O3 catalyst[J]. Catal Lett, 2009,127(3/4):323-333.  

    12. [12]

      YUAN L X, CHEN Y Q, SONG C F, YE T Q, GUO Q X, ZHU X F, TORIMOTO Y, LI Q X. Electrochemical catalytic reforming of oxygenated-organic compounds:A highly efficient method for production of hydrogen from bio-oil[J]. Chem Commun, 2008,41:5215-5217.  

    13. [13]

      KAN T, XIONG J X, LI X L, YE T Q, YUAN L X, TORIMOTO Y, YAMAMOTO M, LI Q X. High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming[J]. Int J Hydrogen Energy, 2010,35(2):518-532. doi: 10.1016/j.ijhydene.2009.11.010

    14. [14]

      TAO Jun. Research on the catalytic conversion of biomass tar model compounds using Ni-based catalysts[D]. Beijing: North China Electric Power University, 2015.

    15. [15]

      YUAN L X, YE T Q, GUO Q X, TORIMOTO Y, YAMAMOTO M, LI Q X. Hydrogen production from the current-enhanced reforming and decomposition of ethanol[J]. Energy Fuels, 2009,23(6):3103-3112. doi: 10.1021/ef801131a

    16. [16]

      HU X, LU G X. Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst[J]. J Mol Catal A:Chen, 2007,261(1):43-48. doi: 10.1016/j.molcata.2006.07.066

    17. [17]

      HU X, LU G X. Syngas production by CO2 reforming of ethanol over Ni/Al2O3 catalyst[J]. Catal Commun, 2009,10(13):1633-1637. doi: 10.1016/j.catcom.2009.04.030

    18. [18]

      JIANG Hong-tao, HUA Wei, JI Jian-bing. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog Chem, 2013,25(5):859-868.  

    19. [19]

      FANG Xiu-zhong. The preparation of highly active and coke resistant Ni-based catalysts for methane reforming for hydrogen production[D]. Jiangxi: Nanchang University, 2016.

    20. [20]

      PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev, 2014,21:7813-7837.  

    21. [21]

      MA Z, JIANG Q Z, WANG X, ZHANG W G, MA Z F. CO2 reforming of dimethyl ether over Ni/γ-Al2O3 catalyst[J]. Catal Commun, 2012,17:49-53. doi: 10.1016/j.catcom.2011.10.014

    22. [22]

      LUISETTO I, SARNO C, FELICIS D D, BASOLI F, BATTOCCHIO C, TUTI S, LICOCCIA S, BARTOLOMEO E D. Ni supported on γ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors[J]. Fuel Process Technol, 2017,158:130-140. doi: 10.1016/j.fuproc.2016.12.015

    23. [23]

      ZHAO Yun-li. Study of methane catalytic reforming to hydrogen on nickel-based catalysts[D]. Taiyuan: Taiyuan University of Technology, 2009.

    24. [24]

      YUAN Li-xia. Basic application research on the hydrogen production from bio-oil and ethanol by electrochemical catalytic steam reforming[D]. Anhui: University of Science and Technology of China, 2008.

    25. [25]

      LI Chun-yi, YU Chang-chun, SHEN Shi-kong. Ni/Al2O3 catalyst for partial oxidation of CH4 to syngas[J]. Chin J Catal, 2001,22:377-382. doi: 10.3321/j.issn:0253-9837.2001.04.016

    26. [26]

      WU H J, PANTALEO G, PAROLA V L, VENEZIA A M, COLLARD X, APRILE C, LIOTTA L. Bi-and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M=Ce or Mg) oxides for methane dry reforming:Au and Pt additive effects[J]. Appl Catal B:Environ, 2014,156-157:350-361. doi: 10.1016/j.apcatb.2014.03.018

    27. [27]

      HOFFER B W, LANGEVELD A D, JANESSENS J P, BONNÈ R L C, LOK C M, MOOLIJIN J A. Stability of highly dispersed Ni/Al2O3 catalysts:Effects of pretreatment[J]. J Catal, 2000,192:432-440. doi: 10.1006/jcat.2000.2867

    28. [28]

      MIRYAM G C, CRISTINA J G, BEATRIZ D R, JOSE I G, Rubén L F. Effect of Ni/Al molar ratio on the performance of substoichiometric NiAl2O4 spinel-based catalysts for partial oxidation of methane[J]. Appl Catal B:Environ, 2017,209:128-138. doi: 10.1016/j.apcatb.2017.02.063

    29. [29]

      NESBITT H W, LEGRANG D, BANCOF G M. Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators[J]. Phys Chem Minerals, 2000,27:357-366. doi: 10.1007/s002690050265

    30. [30]

      LI Chun-yi, YU Chang-chun, SHEN Shi-kong. Ni/Al2O3 catalyst for partial oxidation of CH4 to syngas[J]. Chin J Catal, 2001,22:377-382. doi: 10.3321/j.issn:0253-9837.2001.04.016

    31. [31]

      GUCZI L, STEFLER G, GESZTI O, SAJO I, PASZTI Z, TOMPOS A, SCHAY Z. Methane dry reforming with CO2:A study on surface carbon species[J]. Appl Catal A:Gen, 2010,375:236-246. doi: 10.1016/j.apcata.2009.12.040

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    8. [8]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    9. [9]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    10. [10]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    15. [15]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(8)
  • Abstract views(1137)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return