Citation: LIU Yuan-yuan, SONG Zhen-zhen, YANG Yan-hong, HUANG Ye, SUN Ming, ZHAO Xiang-long, MA Xiao-xun. Asphalt modification with coal tar pitch component based on aldehyde crosslinkers[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 792-800. shu

Asphalt modification with coal tar pitch component based on aldehyde crosslinkers

  • Corresponding author: SUN Ming, sunming@nwu.edu.cn MA Xiao-xun, maxym@nwu.edu.cn
  • Received Date: 4 February 2016
    Revised Date: 4 April 2016

    Fund Project: The project was supported by National Natural Science Foundation of China 21406178Shaanxi Province Natural Science Basic Research Program 2014JQ2070Doctoral Program of Higher Specialized Research Fund 20116101110019Northwestern University Research Fund Project NG14029Shaanxi Provincial Co-ordinator Innovation Projects 01-01-04Ministry of Science and Technology Cooperation Projects S2013GR0064National High Technology Research and Development Program 2011AA05A2021

Figures(4)

  • Adopting tetrahydrofuran solubles of coal tar pitch (THFS) for petroleum asphalt modification, effects of different amounts of mixing, blending temperatures and cross-linking agent on the modified asphalt performance were examined. The optimum blending conditions were determined as amount of THFS, formaldehyde and trioxymethylene cross-linking agents being 8%, 0.8% and 0.2%, respectively at 135 ℃. Hexane soluble (HS) leads to the penetration and ductility of modified asphalt increase, but asphaltene (A) and preasphaltene (PA) improve the temperature sensitivity and raise the softening point. The addition of cross-linking agent improves the aging performance of modified asphalt; the methyl (CH3) and methylene (CH2) transmission peak intensity of modified asphalt gradually become stronger; the substituted benzene ring transmission peak intensity at 770-730 cm-1, 710-690 cm-1 and 770-810 cm-1 gradually increases, and C-O-C vibration transmission peak intensity of 1 010-1 270 cm-1 increases. The pyrolysis peak temperature moved to higher temperature, and the increase of char yield is about 2%. The modified particles exhibit a continuous distribution of flow lines, the streamline distribution of modified asphalt with adding trioxymethylene is more concentrated.
  • 加载中
    1. [1]

      ZHANG Ke-qiong. Study on coal tar/SBS compound modified asphalt [D]. Taiyuan: Taiyuan University of Science and Technology, 2014.

    2. [2]

      YANG J L, WANG Z X, LIU Z Y, ZHANG Y Z. Novel use of residue from direct coal liquefaction process[J]. Energy Fuels, 2009,23(10):4717-22. doi: 10.1021/ef9000083

    3. [3]

      DONG F Q, ZHAO W Z, ZHANG Y Z, WEI J M, FAN W Y, YU Y J, WANG Z. Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt[J]. Constr Build Mater, 2014,62:1-7. doi: 10.1016/j.conbuildmat.2014.03.018

    4. [4]

      SENGOZ B, ISIKYAKAR G. Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen[J]. Constr Build Mater, 2008,22:1897-1905. doi: 10.1016/j.conbuildmat.2007.07.013

    5. [5]

      MO Shi-xiu. Study on trinidad lake asphalt modified asphalt action mechanism and mixture performance[D]. Xi'an: Chang'an University, 2012.

    6. [6]

      MARCOS G, CLARA B, PATRICIA A, PATRICK J W, ROSA M. Chemicals from coal coking[J]. Chem Rev, 2013,114(3):1608-1636.  

    7. [7]

      DANG A-lei, LI Tie-hu, ZHANG Wen-juan, ZHAO Ting-kai, FANG Chang-qing, WANG Zhen. Newest research progress of coal tar pitch[J]. Carbon Technol, 2012,30(6):19-23.  

    8. [8]

      ZHAO Pu. Study of the properties of deploying coal tar pitch and petroleum asphalt[D]. Taiyuan: Taiyuan University of Science and Technology, 2012.

    9. [9]

      WANG Zhai-xia, YANG Jian-li, LIU Zhen-yu. Preliminary study on direct coal liquefaction residue as paving asphalt modifier[J]. J Fuel Chem Technol, 2007,35(1):109-112.  

    10. [10]

      ZHANG Qiu-min, QIN Zhi-zhong, ZHAO Shu-chang, DENG Yi-zhao, LUO Chang-qi, GUO Shu-cai. Blending of coal tar pitch with petroleum asphalt for paving materials[J]. Coal Convers, 1998,2:33-37.  

    11. [11]

      CAO Dong-wei, ZHANG Hai-yan, XUE Yong-bing, ZHAO Pu. Preparation of mixed asphalt by blending coal tar pitch with petroleum asphalt[J]. J Fuel Chem Technol, 2012,40(6):680-684.  

    12. [12]

      YANG Yan-hong, LIU Yuan-yuan, SUN Ming, SONG Zhen-zhen, ZHAO Xiang-long, MA Xiao-xun. Modification of petroleum asphalt with coal tar pitch extract and pyrolysis properties[J]. Chem Ind Eng Prog, 2015,35(2):479-484.  

    13. [13]

      ZHANG Jin-sheng, ZHANG Yin-yan, XIA Xiao-yu, HAO Xiu-hong. Bituminous Materials[M]. Beijing: Chemical Industry Press, 2009.

    14. [14]

      YU Jian-ying, PANG Ling, WU Shao-peng. Aging and Prevent Aging of Bituminous Materials[M]. Wuhan: Wuhan University of Technology Press, 2012.

    15. [15]

      DE SÁ M F A, LINS V F C, PASA V M D, LEITE L F M. Weathering aging of modified asphalt binders[J]. Fuel Process Technol, 2013,115:19-25. doi: 10.1016/j.fuproc.2013.03.029

    16. [16]

      SUN M, MA X X, CAO W, DU P P, YANG Y H, XU L. Effect of polymerization with paraformaldehyde on thermal reactivity of >300 ℃ fraction from low temperature coal tar[J]. Thermochim Acta, 2012,538:48-54. doi: 10.1016/j.tca.2012.03.015

    17. [17]

      CHEN Jin, SUN Ming, DAI Xiao-min, YAO Yi, LIU Yuan-yuan, HE Min, LÜ Bo, ZHAO Xiang-long, MA Xiao-xun. Asphalt modification with direct coal liquefaction reside based on benzaldehyde crosslinking agent[J]. J Fuel Chem Technol, 2015,43(9):1052-1060.

    18. [18]

      LIU Q, HUANG S Y, ZHENG Y, LUO Z Y, CEN K F. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. J Anal Appl Pyrolysis, 2008,89(1):170-177.  

    19. [19]

      XU T, HUANG X M. Study on combustion mechanism of asphalt binder by using TG-FTIR technique[J]. Fuel, 2010,89(9):2185-2190. doi: 10.1016/j.fuel.2010.01.012

    20. [20]

      VALCKE E, RORIF F, SMETS S. Aging of eurobitum bituminized radioactive waste: An ATR-FTIR spectroscopy study[J]. J Nucl Master, 2009,393(1):175-185. doi: 10.1016/j.jnucmat.2009.06.001

    21. [21]

      HANG Ji-hu, GAO Dong-mei, PENG Hao, WU Jin-li, ZHANG Fu-qiang. Study on composition of COPNA resin based on tar asphalt[J]. New Chem Mater, 2012,40(11):32-34.  

    22. [22]

      YAN Yong-li, HE Li. Study on the synthesis of condensed polynuclear aromatic resin using petroleum asphalt as monomer and its mecganism[J]. Polym Master Sci Eng, 2003,19:93-96.  

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

Metrics
  • PDF Downloads(1)
  • Abstract views(1017)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return