Citation: LI Hao, YAN Feng, YANG Shao-bin. Modified solid superacid S2O82-/ZrO2-CoO for oxidative desulfurization of FCC gasoline[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(4): 484-492. shu

Modified solid superacid S2O82-/ZrO2-CoO for oxidative desulfurization of FCC gasoline

  • Corresponding author: YAN Feng, yfstar65@126.com
  • Received Date: 5 December 2018
    Revised Date: 23 January 2019

    Fund Project: The project was supported by the National Science and Technology Major Project Tasks (2016ZX05010-004-005)the National Science and Technology Major Project Tasks 2016ZX05010-004-005

Figures(8)

  • A series of solid super acid catalysts, S2O82-/ZrO2, S2O82-/ZrO2-CuO and S2O82-/ZrO2-CoO, were synthesized by coprecipitation impregnation method with zirconium nitrate, copper nitrate and cobalt nitrate as the metal sources and with ammonium persulfate as the impregnation solution. The catalysts were characterized by XRD, FT-IR and NH3-TPD. The characterization shows that the S2O82-/ZrO2-CoO catalyst has the most super acid sites among the three catalysts. S2O82-/ZrO2-CoO as the catalyst and hydrogen peroxide as the oxidant were used for oxidative desulfurization of FCC gasoline, and the effects of reaction temperature, catalyst dosage, reaction time and oxidant dosage on the desulfurization of FCC gasoline were studied. The optimal conditions were determined as:FCC gasoline of 15 mL, reaction temperature of 70℃, reaction time of 1.5 h, oxidant dosage of V(H2O2):V(oil)=7.5:1, and catalyst dosage of 0.02 g/mL. Moreover, the reaction product was extracted with N, N-dimethylformamide. When the volume ratio of extractant to gasoline is 1:1, the sulfur removal efficiency and recovery of FCC gasoline reach to 85.34% and 94.45%, respectively. The catalyst exhibits a relatively stable catalytic activity.
  • 加载中
    1. [1]

      TAYLOR H J, BELL J N B. Studies on the tolerance to SO2 of grass populations in polluted areas[J]. New Phytol, 1988,110(3):327-338. doi: 10.1111/nph.1988.110.issue-3

    2. [2]

      LAM V, LI G, SONG C, CHEN J, FAIRBRIDGE C, HUI R, ZHANG J. A review of electrochemical desulfurization technologies for fossil fuels[J]. Fuel Process Technol, 2012,98(0):30-38.  

    3. [3]

      STANISLAUS A, MARAFI A, RANA M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production[J]. Catal Today, 2010,153(1/2):1-68.  

    4. [4]

      JIANG Guo-zhen. Strategies of equipment erosion protection in refinery processing high sulfur crude oil[J]. Mach Build Autom, 2003,32(2):38-42. doi: 10.3969/j.issn.1671-5276.2003.02.013

    5. [5]

      LI Yong-an. Trace and balance of sulfur distribution in refinery production process[J]. Petrochem Corros Protect, 2001,18(4):3-8.  

    6. [6]

      BRUNET S, MEY D, PÉROT G, BOUCHY C, DIEHL F. On the hydrodesulfurization of FCC gasoline:A review[J]. Appl Catal A:Gen, 2005,278(2):143-172. doi: 10.1016/j.apcata.2004.10.012

    7. [7]

      NIE Yi, LI Chun-xi, MENG Hong, WANG Zi-hao. Research progress on deep desulfurization technology of gasoline and diesel[J]. Contemp Chem Ind, 2006,35(6):409-413. doi: 10.3969/j.issn.1671-0460.2006.06.016

    8. [8]

      NAPANANG T, SOOKNOI T. Oxidative extraction of thiophene fromn-dodecane over TS-1 in continuous process:A model for non-severe sulfur removal from liquid fuels[J]. Catal Commun, 2010,11(1):1-6.  

    9. [9]

      ZHAO H, BACKER G A, ZHANG Q. Design rules of ionic liquids tasked for highly efficient fuel desulfurization by mild oxidative extraction[J]. Fuel, 2017,189:334-339. doi: 10.1016/j.fuel.2016.10.109

    10. [10]

      MOGHADAM F R, AZIZIAN S, KIANPOUR E, YARIE M, BAYAT M, ZOLFIGOL M A. Green fuel through green route by using task-specific and neutral phosphonium ionic liquid:A joint experimental and theoretical study[J]. Cat Sci Eng, 2017,309:480-488.  

    11. [11]

      ECORMIERM A, WILSON K, LEE A F. Structure reactivity correlations in sulphated-zirconia catalysts for the isomerisation of α-pinene[J]. J Catal, 2003,215(1):57-65. doi: 10.1016/S0021-9517(02)00150-1

    12. [12]

      KIMURA T. Development of Pt/SO42-/ZrO2 catalyst for isomerization of light naphtha[J]. Catal Today, 2003,81(1):57-63. doi: 10.1016/S0920-5861(03)00102-0

    13. [13]

      SHAH A K, KUMAR M, ABDI S H R, KURESHY R I, KHAN N H, BAJAJ H C. Solvent-free aminolysis of aliphatic and aryloxy epoxides with sulfated zirconia as solid acid catalyst[J]. Appl Catal A:Gen, 2014,486:105-114. doi: 10.1016/j.apcata.2014.08.024

    14. [14]

      ZHANG C, ZHANG J, ZHAO Y, SUN J, WU G. Study on the preparation and catalytic activities of SO42- promoted metal oxide solid superacid catalysts for model oil desulfurization[J]. Catal Lett, 2016,146(7):1256-1263. doi: 10.1007/s10562-016-1744-3

    15. [15]

      XIA Yong-de, HUA Wei-ming, GAO Zi. Isobutane isomerization of ZrO2 solid superacid treated by S2O82-[J]. Acta Chim Sin, 1999,57(12):1325-1331. doi: 10.3321/j.issn:0567-7351.1999.12.007

    16. [16]

      SONG H, WANG N, SONG H-L, LI F. La-Ni modified S2O82-/ZrO2-Al2O3 catalyst in n-pentane hydroisomerization[J]. Catal Commun, 2015,59(2015):61-64.  

    17. [17]

      LIU Z X, NIE X A, WANG Y G. Biodiesel preparation from styrax confusus hemsl oil catalyzed by magnetic catalyst S2O82-/ZrO2-Fe3O4[J]. Adv Mater Res, 2013,805-806:247-250. doi: 10.4028/www.scientific.net/AMR.805-806

    18. [18]

      SHEN M. Synthesis of butyl lactate on S2O82-/ZrO2-CeO2 solid superacid catalyst[J]. Appl Chem Ind, 2011,40(5):853-855.

    19. [19]

      YAO Yuan-yong, TANG Bang-cheng, CHEN Shi-xue, XING Ming-ming, WU Si-zhan, SHU Hua. Catalytic hydrolysis of methoxy myricetin by applying solid super acids S2O82-/TiO2or SO42-/TiO2[J]. Food Sci Technol, 2015,40(7):281-285.  

    20. [20]

      GUO Ning, YANG Chong, LIU Zhen-xue, HOU Ying-fei, WANG Ran, LI Chun-hu. Preparation and performance of activated carbon loaded S2O42-/ZrO2 catalyst for catalytic oxidative desulfurization[J]. Acta Pet Sin(Pet Process Sect), 2015,31(6):1416-1424. doi: 10.3969/j.issn.1001-8719.2015.06.024

    21. [21]

      LUO Rui-sheng. Study on oxidative desulfurization of gasoline over super solid acid catalyst[D]. Qingdao: Ocean University of China, 2009. 

    22. [22]

      GUO Ning, HOU Ying-fei, WU Ming-bo, LI Chun-hu. Research on catalyst oxidation and desulfurization process to porous carbon loaded solid super-acid[J]. J Changchun Inst Technol (Nat Sci Ed), 2013,14(2):112-114.  

    23. [23]

      CAO Xiao-hua, ZHAN Chang-chao, REN Jie, XIE Bao-hua, HUANG Xing-xing, TAO Chun-yuan. Preparation and characterization of composite solid super acid and its catalytic activity in synthesis of cyclohexene[J]. Petrochem Technol, 2010,39(1):36-41.  

    24. [24]

      MARCAEWSKI M, KAMINSKAE , MARCZEWSKA H. Decomposition of styrene dimers:The influence of the acid strength of the catalyst[J]. React Kinet Mech Catal, 2013,108(1):59-68. doi: 10.1007/s11144-012-0496-3

    25. [25]

      YANG F, LI Y, ZHANG Q, SUN X, FAN H, XU N, LI G. Selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural with SO42-/MxOy solid superacid catalyst[J]. Carbohydr Polym, 2015,131:9-14. doi: 10.1016/j.carbpol.2015.05.036

    26. [26]

      LEE J S, PARK D S. Interaction of pyridine and ammonia with a sulfate-promoted iron oxide catalyst[J]. J Catal, 1998,120(1):46-54.  

    27. [27]

      OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W, ISHIHARA A, IMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000,14(6):1232-1239. doi: 10.1021/ef000096i

    28. [28]

      SHAN Yu-hua, WU Guo-ying, LI Wei-min, HUANG Wei. A new oxidation process for coking gasoline refining using hydrogenperoxide as oxidant[J]. Petrochem Technol, 2003,32(5):361-364. doi: 10.3321/j.issn:1000-8144.2003.05.001

    29. [29]

      SH/T 0689-2000, Standard test method for determination of total sulfur in light hydrocarbons motor fuels and oils by ultraviolet fluorescence[S].

    30. [30]

      MIAO C, HUA W, CHEN J, GAO Z. Studies on SO42- promoted mixed oxide superacids[J]. Catal Lett, 1996,37(3/4):187-191.

    31. [31]

      WANG H G, SHI G L, YU F, LI R F. Mild synthesis of biofuel over a microcrystalline S2O42-/ZrO2 catalyst[J]. Fuel Process Technol, 2016,145:9-13. doi: 10.1016/j.fuproc.2016.01.021

    32. [32]

      ZENG Fei-hu, WANG Xue-e, CHEN Xue-ping. Structure and catalystic performance of S2O82-/ZrO2 modified by SiO2 or TiO2[J]. Petrochem Technol, 2013,42(4):368-373. doi: 10.3969/j.issn.1000-8144.2013.04.002

    33. [33]

      SONG H, DONG P-H, LI F, JIN Z. Effect of al content on the isomerization performance of solid superacid Pd-S2O82-/ZrO2 -Al2O3[J]. Chem J Chin Univ, 2010,22(11/12):1226-1231.

    34. [34]

      DESHMANE V G, ADEWUYI Y G. Mesoporous nanocrystalline sulfated zirconia synthesis and its application for FFA esterification in oils[J]. Appl Catal A:Gen, 2013,462(27):196-206.  

    35. [35]

      ZHAN Hua-duan, CHEN Xiao-hui, WEI Ke-mei. Preparation of S2O82-/Fe2O3-Al2O3 solid superacid and its behaviors for esterification[J]. Ind Catal, 2010,18(8):23-29. doi: 10.3969/j.issn.1008-1143.2010.08.005

    36. [36]

      WU Hong-da, GUO Min. Keggin structure copper monosubstituted potassium tungstate potassium catalyzed decomposition of hydrogen peroxide[J]. Spec Petrochem, 2003,20(1):8-11.  

    37. [37]

      XU Zhi-zhong, LI Xiao-chun. Analysis of factors affecting hydrogen peroxide decomposition[J]. Text Dyeing Finish J, 2006,28(1):33-35. doi: 10.3969/j.issn.1005-9350.2006.01.011

    38. [38]

      GB/T 33318-2016, Gas analysis-determination of sulfide-gas chromatography with sulfur chemiluminescence[S].

  • 加载中
    1. [1]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    2. [2]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    4. [4]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    5. [5]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    8. [8]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    9. [9]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    10. [10]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    11. [11]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    12. [12]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    13. [13]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    14. [14]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    15. [15]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    17. [17]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    18. [18]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

Metrics
  • PDF Downloads(9)
  • Abstract views(1142)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return