Citation: YANG Cheng, ZHANG Cheng-hua, XU Jian, WU Bao-Shan, YANG Yong, LI Yong-wang. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 837-844. shu

One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst

  • Corresponding author: ZHANG Cheng-hua, zhangchh@sxicc.ac.cn
  • Received Date: 26 February 2016
    Revised Date: 18 April 2016

    Fund Project: The project was supported by the National Natural Science Foundation of China 21173249The project was supported by the National Natural Science Foundation of China 91545109

Figures(9)

  • A series of ZrO2 nanoparticles with different particle sizes and different crystalline phases were prepared using coprecipitation and hydrothermal methods. Their physico-chemical properties were characterized by N2 physisorption, XRD, TEM, Raman spectroscopy, XPS, and NH3-TPD techniques. The catalytic performances for syngas conversion were tested at 400 ℃, 3 MPa, gas hourly space velocity (GHSV) of 500 mL/(gcat·h), and H2/CO/Ar (volume ratio)=5:5:1. It was found that syngas can be directly converted into hydrocarbons over ZrO2 nanoparticles. The hydrocarbon products are mainly composed of isomerized olefins, cyclenes, and aromatics. The selectivity of C5+ hydrocarbons is up to 48%. Moreover, the aromatic concentration in C5+ ranges from 30% to 53% depending on ZrO2 structures. It is also found that the monoclinic ZrO2 shows higher activity than the tetragonal one. Monoclinic ZrO2 with larger specific surface area and acid amount show highest CO conversion as well as the yield of target products, but the monoclinic ZrO2 with lager particle size has the higher acid surface density and results in the higher aromatic selectivity. Consequently, acidity is the key factor for CO conversion. And high acid surface density promotes the formation of aromatics but acid amount affects the activity.
  • 加载中
    1. [1]

      SARTIPI S, MAKKEE M, KAPTEIJN F, GASCON J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: A review[J]. Catal Sci Technol, 2014,4(4):893-907. doi: 10.1039/c3cy01021j

    2. [2]

      SARTIPI S, ALBERTS M, SANTOS V P, NASALEVICH M, GASCON J, KAPTEIJN F. Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer-Tropsch synthesis[J]. ChemCatChem, 2014,6(1):142-151. doi: 10.1002/cctc.v6.1

    3. [3]

      DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008,37(12):2758-2781. doi: 10.1039/b805427d

    4. [4]

      DRY M E. Fischer-Tropsch reactions and the environment[J]. Appl Catal A: Gen, 1999,189(2):185-190. doi: 10.1016/S0926-860X(99)00275-6

    5. [5]

      ANDERSON R B. Catalysts for the Fischer-Tropsch synthesis[C]. New York: Van Nostrand Reinhold, 1956.

    6. [6]

      UDAYA V, RAO S, GORMLEY R J. Bifunctional catalysis in syngas conversions[J]. Catal Today, 1990,6(3):207-234. doi: 10.1016/0920-5861(90)85003-7

    7. [7]

      VAN Der LAAN G P, BEENACKERS A. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review[J]. Catal Rev, 1999,41(3/4):255-318.  

    8. [8]

      XIANG Hong-wei, YANG Yong, LI Yong-wang. Indirect coal liquefaction: from base to industrialization[J]. Sci China Chem, 2014,12:1876-1892.  

    9. [9]

      SUN B, QIAO M H, FAN K N A, ULRICH J, TAO F. Fischer-Tropsch synthesis over molecular sieve supported catalysts[J]. ChemCatChem, 2011,3(3):542-550. doi: 10.1002/cctc.v3.3

    10. [10]

      TOEMEN S, ABU BAKAR W A W, ALI R. Investigation of Ru/Mn/Ce/Al2O3 catalyst for carbon dioxide methanation: Catalytic optimization, physicochemical studies and RSM[J]. J Taiwan Inst Chem E, 2014,45(5):2370-2378. doi: 10.1016/j.jtice.2014.07.009

    11. [11]

      FAN J, WENG D, WU X D, RAN R. Modification of CeO2-ZrO2 mixed oxides by coprecipitated/impregnated Sr: Effect on the microstructure and oxygen storage capacity[J]. J Catal, 2008,258(1):177-186. doi: 10.1016/j.jcat.2008.06.009

    12. [12]

      GE S, HE D, LI Z. A mesoporous Ce0.5Zr0.5O2 solid solution catalyst for CO hydrogenation to iso-C4 hydrocarbons[J]. Catal Lett, 2008,126(1/2):193-199.

    13. [13]

      ZHU Z, HE D. CO hydrogenation to iso-C4 hydrocarbons over CeO2-TiO2 catalysts[J]. Fuel, 2008,87(10/11):2229-2235.

    14. [14]

      PICHLER H, ZIESECKE K H. Isosynthesis by reduced oxide catalysts[J]. Brennst Chem, 1949,30:13-80.

    15. [15]

      MAEHASHI T, MARUYA K, DOMEN K, AIKA K, ONISHI T. Selective formation of iso-butene from carbon-monoxide and hydrogen over zirconium-oxide catalyst[J]. Chem Lett, 1984,5:747-748.  

    16. [16]

      MARUYA K, MAEHASHI T, HARAOKA T, NARUI S, ASAKAWA Y, DOMEN K, ONISHI T. The CO-H2 reaction over ZrO2 to form isobutene selectively[J]. Bull Chem Soc Jpn, 1988,61(3):667-671. doi: 10.1246/bcsj.61.667

    17. [17]

      NANCY B, JACKSON J G E. The surface characteristics required for isosynthesis over zirconium dioxide and modified zirconium dioxide[J]. J Catal, 1990,126(1):31-45. doi: 10.1016/0021-9517(90)90044-K

    18. [18]

      SU C L, HE D H, LI J R, CHEN Z X, ZHU Q M. Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts[J]. Appl Catal A: Gen, 2000,202(1):81-89. doi: 10.1016/S0926-860X(00)00461-0

    19. [19]

      LI Y W, HE D H, YUAN Y B, CHEN Z X, ZHU Q M. Selective formation of isobutene from CO hydrogenation over zirconium dioxide based catalysts[J]. Energy Fuels, 2001,15(6):1434-1440. doi: 10.1021/ef010064a

    20. [20]

      LI Y W, HE D H, CHENG Z X, SU C L, LI R J, ZHU Q M. Effect of calcium salts on isosynthesis over ZrO2 catalysts[J]. J Mol Catal A: Chem, 2001,175(1/2):267-275.  

    21. [21]

      LI Y W, HE D H, ZHU Q M, ZHANG X, XU B Q. Effects of redox properties and acid-base properties on isosynthesis over ZrO2-based catalysts[J]. J Catal, 2004,221(2):584-593. doi: 10.1016/j.jcat.2003.09.023

    22. [22]

      ZHANG R J, HE D H. Effect of alcohol solvents treated ZrO (OH)2 hydrogel on properties of ZrO2 and its catalytic performance in isosynthesis[J]. J Nat Gas Chem, 2012,21(1):1-6. doi: 10.1016/S1003-9953(11)60324-1

    23. [23]

      MARUYA K, KOMIYA T, HAYAKAWA T, LU L H, YASHIMA M. Active sites on ZrO2 for the formation of isobutene from CO and H2[J]. J Mol Catal A: Chem, 2000,159(1):97-102. doi: 10.1016/S1381-1169(00)00176-X

    24. [24]

      ZHANG R, LIU H, HE D. Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis[J]. Catal Commun, 2012,26:244-247. doi: 10.1016/j.catcom.2012.06.005

    25. [25]

      CHANG C D, LANG W H, SILÜESTRI A J. Synthesis gas conversion to aromatic-hydrocarbon[J]. J Catal, 1979,56(2):268-273. doi: 10.1016/0021-9517(79)90113-1

    26. [26]

      LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir, 2008,24(15):8358-8366. doi: 10.1021/la800370r

    27. [27]

      LI Wei-zhen, LIU Hai-chao. Solvent effects on the solvothermal synthesis of pure monoclinic and tetragonal zirconia nanoparticles[J]. Acta Phys-Chim Sin, 2008,24(12):2172-2178.  

    28. [28]

      LI Mei-jun, FENG Zhao-chi, ZHANG Jing, YING Pin-liang, XIN qin, LI Can. Study of influence of calcination atmosphere on phase transformation of zirconia by UV raman spectroscopy[J]. Chin J Catal, 2003,11:861-866.  

    29. [29]

      ZHANG W, TAN Y Y, GAO Y L, WU J X, TANG B. Ultrafine nano zirconia as electrochemical pseudocapacitor material[J]. Ceram Int, 2015,41(2):2626-2630. doi: 10.1016/j.ceramint.2014.10.047

    30. [30]

      ARDIZZONE S, BIANCHI C L. XPS characterization of sulphated zirconia catalysts: The role of iron[J]. Surf Interface Anal, 2000,30(1):77-80. doi: 10.1002/(ISSN)1096-9918

  • 加载中
    1. [1]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    2. [2]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    12. [12]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    13. [13]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    14. [14]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    18. [18]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    20. [20]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

Metrics
  • PDF Downloads(4)
  • Abstract views(2317)
  • HTML views(538)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return