Citation: OUYANG Qian, YANG Ni, YAO Jing-wen, HUANG Jin, ZHANG Yi, LIU Xue-jun. Research on the catalytic performance of supported Pt catalyst for hydrodeoxygenation of biodiesel[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1202-1209. shu

Research on the catalytic performance of supported Pt catalyst for hydrodeoxygenation of biodiesel

  • Corresponding author: LIU Xue-jun, zjutjjb@163.com
  • Received Date: 17 May 2018
    Revised Date: 22 July 2018

Figures(6)

  • The Pt/Al2O3, Pt/Al2O3-ZSM-5 and Pt/ZSM-5 catalysts were prepared and characterized by XRD, BET, SEM and NH3-TPD. The effects of crystal structure, acidity, pore size distribution and external shape of the three catalysts on the hydrodeoxygenation of fatty acid methyl esters were investigated under different reaction conditions. The results show that the Brønsted acidic sites and proportion of mesoporous volume were critical for the hydrodeoxygenation of fatty acid methyl esters. The Brønsted acidic site plays a major role in the C-O bond breakage of deoxygenation reaction, the mesopores improved the mass transfer efficiency of the entire reaction and avoided cracking of C12-18 long chain alkanes. The hydrodeoxygenation activity of the three catalysts were as follow:Pt/Al2O3-ZSM-5>Pt/Al2O3>Pt/ZSM-5. The optimal reaction conditions were as follow:t=350 ℃, p=2 MPa, H2/oil=1000, WHSV=0.5 h-1. Under the optimal reaction conditions, the fatty acid methyl ester conversion of Pt/Al2O3-ZSM-5 was 99.4%, and the liquid yield of the target product was 86.8%.
  • 加载中
    1. [1]

      ZHAO X H, WEI L, CHENG S Y, JULSON J. Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels[J]. Catalysts, 2017,7(3):83-107.  

    2. [2]

      ZHANG S, YAN Y, LI T Z. Upgrading of liquid fuel from the pyrolysis of biomass[J]. Bioresource Technol, 2005,96(5):545-550. doi: 10.1016/j.biortech.2004.06.015

    3. [3]

      HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-4098. doi: 10.1021/cr068360d

    4. [4]

      SHI Y C, XING E H, WU K J, WANG J L, YANG M D, WU Y L. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts[J]. Catal Sci Technol, 2017,7(12):2385-2415. doi: 10.1039/C7CY00574A

    5. [5]

      DICKERSON T, SORIA J. Catalytic fast pyrolysis:A Review[J]. Energies, 2013,6(1):514-538. doi: 10.3390/en6010514

    6. [6]

      YANG Xiao-dong, WANG Xin-miao, GAO Shan-bin, WANG An-jie. Hydrodesulfurization performances of Pd catalysts supported on ZSM-5/MCM-41 composite zeolite[J]. Acta Chim Sin, 2017,75(5):479-484.  

    7. [7]

      ZUO Hua-liang, LIU Qi-ying, WANG Tie-jun, SHI Na, LIU Jian-guo, MA Long-long. Catalytic hydrodeoxygenation of vegetable oil over Ni catalysts to produce second-generation biodiesel[J]. J Fuel Chem Technol, 2012,40(9):1067-1073. doi: 10.3969/j.issn.0253-2409.2012.09.007

    8. [8]

      ECHEANDIA S, PAWELEC B, BARRIO V L, ARIAS P L, CAMBRA J F, LORICERA C V, FIERRO J L G. Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils[J]. Fuel, 2014,117(1):1061-1073.  

    9. [9]

      JI Y J, YANG H H, YAN W. Strategies to enhance the catalytic performance of ZSM-5 zeolite in hydrocarbon cracking:A Review[J]. Catalysts, 2017,7(12):367-397. doi: 10.3390/catal7120367

    10. [10]

      CHENG S Y, WEI L, JULSON J, MUTHUKUMARAPPAN K, KHAREL P R. Upgrading pyrolysis bio-oil to hydrocarbon enriched biofuel over bifunctional Fe-Ni/HZSM-5 catalyst in supercritical methanol[J]. Fuel Process Technol, 2017,167(12):117-126.  

    11. [11]

      LIU J N, XIANG M, WU D F. Enhanced phenol hydrodeoxygenation over a Ni catalyst supported on a mixed mesoporous ZSM-5 zeolite and Al2O3[J]. Catal Lett, 2017,147(10):2498-2507. doi: 10.1007/s10562-017-2161-y

    12. [12]

      KANG J C, CHENG K, ZHANG L, ZHANG Q H, DING J S, HUA W Q, LOU Y C, ZHAI Q G, WANG Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-11 isoparaffins[J]. Angew Chem, 2011,123(22):5306-5309. doi: 10.1002/ange.v123.22

    13. [13]

      CHEN N, GONG S F, SHIRAI H, WATANABE T, QIAN E W. Effects of Si/Al ratio and Pt loading on Pt/SAPO-11 catalysts in hydroconversion of Jatropha oil[J]. Appl Catal A:Gen, 2013,466(36):105-115.  

    14. [14]

      SANKARANARAYANAN T M, BERENGUER A, OCHOA-HERNáNDEZ C, MORENO I, JANA P, CORONADO J M, SERRANO D P, PIZARRO P. Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts:Effect of metal and support properties[J]. Catal Today, 2015,243(8):163-172.  

    15. [15]

      CHEN N, WANGN N N, REN Y X, TOMINAGA H, QIAN E W. Effect of surface modification with silica on the structure and activity of Pt/ZSM-22@SiO2, catalysts in hydrodeoxygenation of methyl palmitate[J]. J Catal, 2017,345:124-134. doi: 10.1016/j.jcat.2016.09.005

    16. [16]

      SRIFA A, FAUNGNAWAKIJ K, ITTHIBENCHAPONG V, VIRIYA-EMPIKUL N, CHARINPANITKUL T, ASSABUMRUNGRAT S. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst[J]. Bioresouce Technol, 2014,158(X):81-90.  

  • 加载中
    1. [1]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    5. [5]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    7. [7]

      Le HanZhou YuanBohan LiYuchi ZhangLin YangYan Xu . Highly-stable cesium lead halide perovskite CsPbBr3/CsPb2Br5 heteronanocrystals in zeolitic imidazolate framework-8 for antibiotic photodegradation. Chinese Chemical Letters, 2025, 36(6): 110349-. doi: 10.1016/j.cclet.2024.110349

    8. [8]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    9. [9]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    10. [10]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    11. [11]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    12. [12]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    20. [20]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

Metrics
  • PDF Downloads(14)
  • Abstract views(1327)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return