Citation: HONG Xin, LI Yun-he, YUAN Jia-cheng, ZHAO Yong-hua, TANG Ke. Various basic nitrogen compounds removal from model diesel by adsorption with allochroic silica gel[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 298-304. shu

Various basic nitrogen compounds removal from model diesel by adsorption with allochroic silica gel

  • Corresponding author: TANG Ke, tangke0001@163.com
  • Received Date: 22 September 2017
    Revised Date: 25 December 2017

    Fund Project: Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization 2016KLOG04The project was supported by the Liaoning Provincial Natural Science Foundation of China(2014020113)and Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization(2016KLOG04)the Liaoning Provincial Natural Science Foundation of China 2014020113

Figures(10)

  • The allochroic silica gel was used for adsorptive denitrification from model diesel containing known amounts of quinoline, aniline or pyridine with a total nitrogen concentration 960.56 μg/g. The adsorptive removal of quinoline in model diesel with alumina, diatomite, silica gel and allochroic silica gel was investigated. The experiment results indicate that the adsorptive denitrification performance of allochroic silica gel is more superior to that of other three adsorbents, implying that the CoCl2 in allochroic silica gel can significantly improve the performance of denitrification. The silica gel and allochroic silica gel were characterized with X-ray diffraction (XRD), nitrogen adsorption and NH3-TPD. The XRD results indicate that the two samples are of an amorphous structure. Silica gel and allochroic silica gel have the average pore diameter of 18.46 and 1.80 nm, the Brunauer-Emmett-Teller (BET) surface area of 437.86 and 623.39 m2/g, and the pore volume of 0.9724 and 0.3442 m3/g, respectively. The results of NH3-TPD show that the acidity of allochroic silica gel is much stronger than that of silica gel which greatly enhances the adsorptive denitrification. Also, the influence of particle size, adsorption temperature, adsorption time, adsorbent to oil mass ratio and aromatic compounds on the adsorptive denitrification of allochroic silica gel was investigated. The adsorptive denitrification for different model diesels by allochroic silica gel is ordered as:aniline > pyridine > quinoline. Adsorption time has almost no influence on the removal of three nitrogen compounds. Adsorption temperature, particle size and aromatic compounds in the model diesel have little impact on the removal of aniline and pyridine, but have evident influences on the removal of quinoline. The adsorbent to oil ratio has a significant effect on the adsorptive denitrification, especially for quinoline. The experimental results suggest that the N-Co bond between Co in allochroic silica gel and N atom in the nitrogen compounds plays a significant role. Furthermore, the allochroic silica gel could be easily regenerated to recover its adsorptive denitrification for quinoline and pyridine by calcination once or several times, but except aniline.
  • 加载中
    1. [1]

      LI Zheng-guang, YUAN Jian-guo. China's diesel demand[J]. Int Pet Econ, 2015,23(9):88-93.  

    2. [2]

      YANG Kun-hao, XIA Zan-yu, HE Peng, WU Li, GONG Ling-ling, QIAN Yue-ying, HOU Yan-lin, HE Yu-juan. Correlation of fuel quality and emissions of motor vehicle with atmospheric pollution in Beijing[J]. J Univ Chin Acad Sci, 2017,34(3):305-317.  

    3. [3]

      LI N, ALMARRI M, MA X L, ZHA Q F. The role of surface oxygen-containing functional groups in liquid-phase adsorptive denitrogenation by activated carbon[J]. New Carbon Mater, 2011,26(6):470-478. doi: 10.1016/S1872-5805(11)60093-0

    4. [4]

      WEN Jie, SUN Wen-jing, YANG Wen. Effects of oxidative modification of carbon surface on selective removal of nitrogen compounds from model fuel[J]. J Funct Mater, 2013,20(40):2954-2958.  

    5. [5]

      LI Hong-yue, WANG Lei, ZHANG Man, LIU Bao-yu, WANG Li-xin, LIU Dan. Removal of basic nitrogen compounds in coker gas oil by supported heteropoly acid[J]. Chem Ind Eng Prog, 2016,35(3):826-830.  

    6. [6]

      SEO P W, AHMED I, JHUNG S H. Adsorptive removal of nitrogen containing compounds from a model fuel using a metal organic framework having a free carboxylic acid group[J]. Chem Eng J, 2016,299:236-243. doi: 10.1016/j.cej.2016.04.060

    7. [7]

      KIM J H, MA X L, ZHOU A N. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:A study on adsorptive selectivity and mechanism[J]. Catal Today, 2006,111:74-83. doi: 10.1016/j.cattod.2005.10.017

    8. [8]

      LI C, SHEN B X, LIU J C. The removal of organic nitrogen compounds in naphtha by adsorption[J]. Energ Source Part A, 2013,35:2348-2355. doi: 10.1080/15567036.2010.535098

    9. [9]

      XU Xiao-yu, SUN Yue, SHEN Jian, ZHAI Yu-long. Adsorption behavior of basic nitrides in model oil on HY and USY molecular sieves[J]. Chem Ind Eng Prog, 2014,33(4):1035-1040.  

    10. [10]

      HONG X, TA NG. Adsorptive denitrogenation of diesel oil using a modified NaY molecular sieve[J]. Petrol Sci Technol, 2015,33:1471-1478. doi: 10.1080/10916466.2015.1076844

    11. [11]

      TANG Lei, JI Gui-jie, SHEN Jian. Study on W-SBA-15 preparation and its adsorptive denitrificationi performance[J]. Pet Process Petroche, 2015,46(8):76-80.  

    12. [12]

      LUO Zi-qin, ZHENG Xiao-ming, TIAN Fang, WANG Hui. Experimental research on adsorption performances of the W-SBA-15 zeolite for basic nitrogen compounds in CGO[J]. Pet Refinery Eng, 2017,47(3):61-64.  

    13. [13]

      WANG Yun-fang, BU Chang-juan, CHI Zhi-ming, LI Qian. Adsorption of quinoline on zeolite AL-MCM-41[J]. CIESC J, 2015,66(9):3597-3604.  

    14. [14]

      CHI Zhi-ming. Basic research of Al-MCM-41 molecular sieve for denitrogenation of diese oil[D]. Beijing: China University of Petroleum, 2010. 

    15. [15]

      PANG Hai-quan, LI Yan-fang, HAN Dong-yun, JIN Yang, QIAN Hai-yan, CAO Zu-bin. Research on removing nitrogen compounds from model diesel oil by alkylayion method[J]. Spec Petrochem, 2017,34(2):67-70.  

    16. [16]

      SINA Rashidi S, Nikou M R K, Anvaripour B. Adsorptive desulfurization and denitrogenation of model fuel using HPW and NiO-HPW modified aluminosilicate mesostructures[J]. Microporous Mesoporous Mater, 2015,211:134-141. doi: 10.1016/j.micromeso.2015.02.041

    17. [17]

      HONG Xin, TANG Ke. Preparation and adsorption denitrification of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. J Fuel Chem Technol, 2015,43(6):720-727.  

    18. [18]

      TANG K, HONG X. Preparation and characterization of Co-MCM-41 and its adsorption removing basic nitrogen compounds from FCC diesel oil[J]. Energy Fuels, 2016,30(6):4619-4624. doi: 10.1021/acs.energyfuels.6b00427

    19. [19]

      HONG Xin, TANG Ke, DING Shi-hong. Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. J Fuel Chem Technol, 2016,44(1):99-105.  

    20. [20]

      LI Shao-kai, RUAN Ben-xi, SHEN Jian, ZHAO Ming-fei. Study on nitrogen compounds adsorption performance of silica gel[J]. Pet Process Petrochem, 2013,44(6):22-25.  

  • 加载中
    1. [1]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    2. [2]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    9. [9]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    13. [13]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    14. [14]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    15. [15]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    16. [16]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    17. [17]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    18. [18]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

Metrics
  • PDF Downloads(7)
  • Abstract views(2269)
  • HTML views(702)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return