Citation: Zhenhua Tang, Jiamin Liu, Yihong Fu, Weinan Hu, Zhenchao Wang, Guiping Ouyang. Progress in Antitumor Activity of 3-Substituted Indole Derivatives[J]. Chemistry, ;2021, 84(1): 47-52. shu

Progress in Antitumor Activity of 3-Substituted Indole Derivatives

  • Indole is a compound widely found in nature, having a variety of biological activities like antitumor, antioxidant and antibacterial. The introduction of different substituents at the 3-position on the indole ring for structural modification and transformation has always been a drug research hotspot. In this article the related literature in recent years were summarized, and the antitumor activities of 3-substitution indole derivatives with the different heterocycle substituents such as pyrazoles and pyrazolines, diazoles and triazoles, cyclization with 2-position were reviewed in order to provide a theoretical basis for the development of highly active antitumor drugs.
  • 加载中
    1. [1]

      Singh T P, Singh O M. Mini-Rev. Med. Chem., 2018, 18(1): 9~25.

    2. [2]

      Dal Molin G Z, Omatsu K, Sood A K, et al. Ther. Adv. Med. Oncol., 2018, 10: 1~13. 

    3. [3]

      Van Veggel B, Madeira R S J F V, Hashemi S M S, et al. Lung Cancer, 2020, 141: 9~13. 

    4. [4]

      Dias J N R, Aguiar S I, Pereira D M, et al. Oncotarget, 2018, 9(47): 28586~28598. 

    5. [5]

      Cheng Y, Cai L, Jiang P, et al. Eur. J. Pharm., 2013, 715(1-3): 219~229. 

    6. [6]

      Dadashpour S, Emami S. Eur. J. Med. Chem., 2018, 150: 9~29. 

    7. [7]

      Rosales P F, Bordin G S, Gower A E, et al. Fitoterapia, 2020, 143: 104558. 

    8. [8]

      Kumar D, Sharma S, Kalra S, et al. Curr. Drug Targets, 2020: 115327.

    9. [9]

      Chen F Y, Li X, Zhu H P, et al. Front. Pharmacol., 2020, 11: 280. 

    10. [10]

      Wan Y, Li Y, Yan C, et al. Eur. J. Med. Chem., 2019, 183: 111691. 

    11. [11]

      Zhang D T, Wang G T, Zhao G L, et al. Eur. J. Med. Chem., 2011, 46(12): 5868~5877. 

    12. [12]

      Bhale P S, Bandgar B P, Dongare S B, et al. Phosphorus Sulfur, 2019, 194(8): 843~849. 

    13. [13]

      Zhang Y L, Qin Y J, Tang D J, et al. ChemMedChem, 2016, 11(13): 1446~1458. 

    14. [14]

      Chen K, Zhang Y L, Fan J, et al. Eur. J. Med. Chem., 2018, 156: 722~737. 

    15. [15]

      Shu B, Yu Q, Hu D X, et al. Bioorg. Med. Chem. Lett., 2020, 30(4): 126925. 

    16. [16]

      Kumar D, Narayanam M K, Chang K H, et al. Chem. Biol. Drug Design, 2011, 77(3): 182~188. 

    17. [17]

      Tantak M P, Kumar A, Noel B, et al. ChemMedChem, 2013, 8(9): 1468~1474. 

    18. [18]

      Shirinzadeh H, Ince E, Westwell A D, et al. J. Enzyme Inhib. Med. Chem., 2016, 31(6): 1312~1321. 

    19. [19]

      Kamath P R, Joseph M M, Abdul Salam A A, et al. J. Biochem. Mol. Toxicol., 2017, 31(11): e21962.

    20. [20]

      Netz N, Opatz T. Marine Drugs, 2015, 13(8): 4814~4914. 

    21. [21]

      Golantsov N E, Festa A A, Karchava A V, et al. Chem. Heter. Compd., 2013, 49(2): 203~225. 

    22. [22]

      Naaz F, Ahmad F, Lone B A, et al. Bioorg. Chem., 2020, 95: 103519. 

    23. [23]

      Peng W, Switalska M, Wang L, et al. Eur. J. Med. Chem., 2012, 58: 441~451. 

    24. [24]

      Chaniyara R, Tala S, Chen C W, et al. J. Med. Chem., 2013, 56(4): 1544~1563. 

    25. [25]

      Devambatla R K V, Li W, Zaware N, et al. Bioorg. Med. Chem. Lett., 2017, 27(15): 3423~3430. 

    26. [26]

      Patil S A, Addo J K, Deokar H, et al. Drug Design., 2017, 6(1): 143.

    27. [27]

      Jorda R, Reznickova E, Kielczewska U, et al. Eur. J. Med. Chem., 2019, 179: 483~492. 

    28. [28]

      Spano V, Attanzio A, Cascioferro S, et al. Marine Drugs, 2016, 14(12): 226. 

    29. [29]

      Lafayette E A, De Almeida S M V, Santos R V C, et al. Eur. J. Med. Chem., 2017, 136: 511~522. 

    30. [30]

      Gao X, Cen L, Li F, et al. Biochem. Biophys. Res. Commun., 2018, 505(3): 761~767. 

    31. [31]

      Neochoritis C G, Wang K, Estrada-Ortiz N, et al. Bioorg. Med. Chem. Lett., 2015, 25(24): 5661~5666. 

    32. [32]

      Cascioferro S, Petri G L, Parrino B, et al. Molecules, 2020, 25(2): 329. 

    33. [33]

      Zhao B, Zhao C, Hu X, et al. Eur. J. Med. Chem., 2020, 185: 111809. 

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    3. [3]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    4. [4]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    9. [9]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    10. [10]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    11. [11]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    12. [12]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    13. [13]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    16. [16]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    17. [17]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    18. [18]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

Metrics
  • PDF Downloads(39)
  • Abstract views(2142)
  • HTML views(693)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return