Citation: ZHAO Chun-qiu, LIU Jing-ge, LIU Cheng-wei, ZHANG Cheng-hua, LIU Dan, GUI Jian-zhou. One-step conversion of syngas to hydrocarbons and ethers over ZIF-8 derived ZnO coupling HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 698-703. shu

One-step conversion of syngas to hydrocarbons and ethers over ZIF-8 derived ZnO coupling HZSM-5

  • Corresponding author: ZHANG Cheng-hua, zhangchh@sxicc.ac.cn LIU Dan, liudan@tiangong.edu.cn
  • Received Date: 7 April 2020
    Revised Date: 2 June 2020

    Fund Project: the National Natural Science Foundation of China 21576211The project was supported by the National Natural Science Foundation of China (21576211, 21908164)the National Natural Science Foundation of China 21908164

Figures(4)

  • Zeolitic imidazolate frameworks (ZIF-8) were synthesized by solvothermal method. Used as precursor, ZIF-8 was decomposed into nanoparticles ZnO at different pyrolysis temperature in air atmosphere. The composition, structure and crystal size of ZnO were characterized by XRD, TEM, XPS, and Raman methods. The ZnO nanoparticles were coupled with HZSM-5 to form bifunctional catalysts. The catalytic performances of bifunctional catalysts in the syngas conversion were investigated in a fixed-bed tubular reactor. The results demonstrate that the pyrolysis temperature has an important influence on the particle size of ZnO. The temperature affects the rate of grain formation. High temperature promotes the aggregation of ZnO. The ZnO grain size by changing the temperature plays a role in changing the product distribution. When the pyrolysis temperature is near or below 450℃, carbon-coated ZnO nanoparticles are obtained, and the ZnO grain size is less than 20 nm. The carbon-coated ZnO coupled with HZSM-5 catalyzes syngas mainly into dimethyl ether (DME). When the temperature is higher than 450℃, pure phase ZnO nanoparticles are obtained, and the ZnO grain size is larger than 20 nm. The pure ZnO coupled with HZSM-5 catalyzes syngas mainly into hydrocarbons. Obviously, the coupling modes of ZnO and HZSM-5 have a significant effect on the product selectivity of bifunctional catalysts.
  • 加载中
    1. [1]

      LIU X L, ZHOU W, YANG Y, CHENG K, KANG J, ZHAG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci, 2018,9(20):4708-4718. doi: 10.1039/C8SC01597J

    2. [2]

      SHIKADA T, OHNO Y, OGAWA T, ONO M, MIZUGUCHI M, TOMURA K, FUJIMOTA K. Direct synthesis of dimethyl ether form synthesis gas[J]. Stud Surf Sci Catal, 1998,119:515-520. doi: 10.1016/S0167-2991(98)80483-7

    3. [3]

      RAVEENDRA G, LI C, YANG C, MENG F H, LI Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New J Chem, 2018,42(10):4419-4431.  

    4. [4]

      GENTZEN M, HABICHT W, DORONKIN D E, GRUNWALDT J D, SAUER J, BEHRENS S. Bifunctional hybrid catalysts derived from Cu/Zn-based nanoparticles for single-step dimethyl ether synthesis[J]. Catal Sci Technol, 2015,6(4):10-21.  

    5. [5]

      YANG J H, PAN X L, JIAO F, LI J, BAO X H. Direct conversion of syngas to aromatics[J]. Chem Commun, 2017,53:11146-11149. doi: 10.1039/C7CC04768A

    6. [6]

      CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017,3(2):1-14.  

    7. [7]

      SARAVANAN K, HANM H, TSUBAKI N, JONG WOOK B. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts[J]. Appl Catal B:Environ, 2017.  

    8. [8]

      CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016,55(15):1-5.  

    9. [9]

      CHEN H Y, LAU S P, CHEN L, LIN J, HUAN C H A, TAN K L, PAN J S. Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis[J]. Appl Surf Sci, 1999,152(3/4):193-199.  

    10. [10]

      WILMER H, KURTZ M, KLEMENTIEV K V, TKACHENKO O P, GRVNERT W, HINRICHSEN O, BIRKNERA , RABE S, MERZ K, DRIESS M, WÖLL C, MUHLER M. Methanol synthesis over ZnO:A structure-sensitive reaction?[J]. PCCP, 2003,5(20):4736-4742. doi: 10.1039/B304425D

    11. [11]

      NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014,19725261.  

    12. [12]

      TAMADDON F, MORADI S. Controllable selectivity in Biginelli and Hantzsch reactions using nanoZnO as a structure base catalyst[J]. J Mol Catal A:Chem, 2013,370:117-122. doi: 10.1016/j.molcata.2012.12.005

    13. [13]

      YANG S J, IM J H, KIM T, LEE K, PARK C R. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity[J]. J Hazard Mater, 2011,186(1):376-382. doi: 10.1016/j.jhazmat.2010.11.019

    14. [14]

      YAO Xian-fang, LI Ying-wei. Method for preparing nanoporous carbon material by using MOFs as sacrificial template and application[J]. Chin Sci Bull, 2015,60(20):1906-1914.  

    15. [15]

      VIETH J K, JANIAK C. MOFs, MILs and more:Concepts, properties and applications for porous coordination networks (PCNs)[J]. Chem Inform, 2010,34(11):2366-2388.  

    16. [16]

      PARK K, NI Z, COTE A, CHOI J Y, HUANG R D, URIBE-ROMO F J, CHAO H K, KEEFFE M, YAGHI O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS, 2006,103(27):10186-10191. doi: 10.1073/pnas.0602439103

    17. [17]

      BATS N, CHIZALLET C, LAZARE S, BAZER-BACHI D, BONNIER F, LECOCQ V, SOYER E, QUOINEAUD A, BATS N. Catalysis of transesterification by a nonfunctionalized metal-organic framework:Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations[J]. J Am Chem Soc, 2010,132(35):12365-12377. doi: 10.1021/ja103365s

    18. [18]

      LEE J Y, FARHA O K, ROBERTS J, LEE Y, FARHA O K, ROBERTS J, SCHEIDT K A, NGUYEN S T, HUPP J T. Metal-organic framework materials as catalysts[J]. Chem Soc Rev, 2009,38(5):1450-1459. doi: 10.1039/b807080f

    19. [19]

      YANG S J, KIM T, IM J H, KIM Y S, LEE K, JUNG H, PARK C R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem Mater, 2012,24(3):464-470. doi: 10.1021/cm202554j

    20. [20]

      ZHENG F, YANG Y, CHEN Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nat Commun, 2014,5(5):5261-5270.  

    21. [21]

      SWIATOWSKA-MROWIECKA J, ZANNA S, OGLE K, MARCUS P. Adsorption of 1, 2-diaminoethane on ZnO thin films from p-xylene[J]. Appl Surf Sci, 2008,254(17):5530-5539. doi: 10.1016/j.apsusc.2008.02.170

    22. [22]

      JING L Q, XU Z L, SHANG J, SUN X J, CAI W M, GUO H C. The preparation and characterization of ZnO ultrafine particles[J]. Mater Sci Eng A, 2002(1/2):356-361.  

    23. [23]

      ANSARI S A, KHAN M M, KALATHIL S, NISAR A, LEE J, CHO M H. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm[J]. Nanoscale, 2013,5(19):9238-9246. doi: 10.1039/c3nr02678g

    24. [24]

      HAN Y Z, QI P F, LI S W, FENG X, ZHOU J W, LI H W, SU S Y, LI X G, WANG B. A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries[J]. Chem Commun, 2014,50(59):8057-8060. doi: 10.1039/C4CC02691H

    25. [25]

      CHOI Y, FUTAGAMI K, FUJITANI T, J. NAKAMURA. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model?[J]. Appl Catal A:Gen, 2001,208(1/2):163-167.  

    26. [26]

      KURTZ M, STRUNK J, HINRICHSEN O, MUHLER M, FINK K, MEYER B AND WÖLL C. Active sites on oxide surfaces:ZnO-catalyzed synthesis of methanol from CO and H2[J]. Angew Chem Int Ed, 2005,44:2790-2794. doi: 10.1002/anie.200462374

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    4. [4]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    5. [5]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    17. [17]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(6)
  • Abstract views(394)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return