Citation: DONG Lu, HUANG Ya-ji, YUAN Qi, CHENG Hao-qiang, DING Shou-yi, WANG Sheng, DUAN Yu-feng. Experimental study on the mercury removal from flue gas using manganese modified titanium-zirconium and titanium-tin composite oxide catalysts[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 741-751. shu

Experimental study on the mercury removal from flue gas using manganese modified titanium-zirconium and titanium-tin composite oxide catalysts

  • Corresponding author: HUANG Ya-ji, heyyj@seu.edu.cn
  • Received Date: 14 April 2020
    Revised Date: 5 June 2020

    Fund Project: The project was supported by the National Key Research and Development Project (2016YFC0201105), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0079) and the Scientific Research Foundation of Graduate School of Southeast University (3203009703)the Scientific Research Foundation of Graduate School of Southeast University 3203009703the National Key Research and Development Project 2016YFC0201105the Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX17_0079

Figures(8)

  • In this study, TiO2, TiZr and TiSn supports were prepared using co-precipitation method, and MnTi, MnTiZr, and MnTiSn catalysts with MnO2 content of 10%were prepared by the wet impregnation method. BET, XRD, H2-TPR, FT-IR, and XPS were employed to characterize the prepared samples. The Hg0 removal performance tests over the three catalysts were conducted in a fixed-bed reactor apparatus. The results indicated that the Hg0 removal performance of MnTiZr and MnTiSn catalysts was better than that of MnTi catalyst in the temperature range of 100-300℃. This could be attributed to the introduction of Sn and Zr, which increased the specific surface area of the catalyst, improved the low-temperature redox performance of the catalyst, and elevate the number of acid sites, the high valence manganese ions concentration and O* content on the catalyst surface. The mercury removal efficiency of the MnTiSn catalyst was higher than that of MnTiZr catalyst at reaction temperature of 150-300℃, which could be ascribed to the higher redox performance of the MnTiSn catalyst and more content of the high valence manganese ions, O*, and surface acid sites on its surface. During the removal of Hg0 in flue gas by MnTiZr and MnTiSn catalysts, active ingredients on the catalyst surface such as high-valence manganese ions and O* were consumed and participated in the reaction of Hg0 oxidation to Hg2+. And the consumed amount of active ingredients on the surface of MnTiSn catalyst was more than that on the MnTiZr catalyst.
  • 加载中
    1. [1]

      ZHAO J X, LI H L, YANG Z Q, ZHU L, ZHANG M G, FENG Y, QU W Q, YANG J P, SHIH K. Dual roles of nano-sulfide in efficient removal of elemental mercury from coal combustion flue gas within a wide temperature range[J]. Environ Sci Technol, 2018,52(21):12926-12933. doi: 10.1021/acs.est.8b04340

    2. [2]

      ZHAO S L, PUDASAINEE D, DUAN Y F, GUPTA R, LIU M, LU J H. A review on mercury in coal combustion process:Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Prog Energy Combust Sci, 2019,73:26-64. doi: 10.1016/j.pecs.2019.02.001

    3. [3]

      ZHOU Qiang, DUAN Yu-feng, LU Ping. Research progress on in-duct mercury removal by sorbent injection in power plant[J]. Chem Ind Eng Prog, 2018,37(11):4460-4467.  

    4. [4]

      YANG Z Q, LI H L, YANG J P, FENG S H, LIU X, ZHAO J X, QU W Q, LI P, FENG Y, LEE P H, SHIH K. Nanosized copper selenide functionalized zeolitic imidazolate framework-8(CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Adv Funct Mater, 2019,29(17)1807191. doi: 10.1002/adfm.201807191

    5. [5]

      WANG Peng-ying, SU Sheng, XIANG Jun, CAO Fan, YOU Mo, HU Song, SUN Lu-shi, ZHANG Liang-ping. Experimental study on NO reduction and Hg0 oxidation over low temperature SCR catalyst[J]. J Combust Sci Technol, 2014,20(5):423-427.  

    6. [6]

      CHI Gui-long, SHEN Bo-xiong, ZHU Shao-wen, HE Chuan. Oxidation of elemental mercury over modified SCR catalysts[J]. J Fuel Chem Technol, 2016,44(6):763-768. doi: 10.3969/j.issn.0253-2409.2016.06.018 

    7. [7]

      ZHAO Li, HE Qing-song, LI Lin, LU Qiang, DONG Chang-qing, YANG Yong-ping. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. J Fuel Chem Technol, 2015,43(5):628-634. doi: 10.3969/j.issn.0253-2409.2015.05.016 

    8. [8]

      GENG Xin-ze, DUAN Yu-feng, HU Peng, LIU Shuai, LIANG Cai. Characteristics of denitrification and mercury removal of Ce-W/TiO2 catalysts in SCR atmosphere[J]. China Environ Sci, 2019,39(4):1419-1426. doi: 10.3969/j.issn.1000-6923.2019.04.009

    9. [9]

      ZHANG S B, ZHAO Y C, WANG Z H, ZHANG J Y, WANG L L, ZHENG C G. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci, 2017,53:141-150. doi: 10.1016/j.jes.2015.10.038

    10. [10]

      YU Xian-qun, BAO Jing-jing, JIANG Xiao-xiang, YANG Hong-min. Performance and mechanism of catalytic oxidation for mercury by Mn-doped TiO2 catalysts in flue gas[J]. Proc CSEE, 2015,35(13):3331-3337.  

    11. [11]

      LIU J, GUO R T, SUN X, PAN W G, WANG Z Y, LIU X Y, SHI X, QIN H, HU C X. Simultaneous NO reduction and Hg0 oxidation over Sb modified Mn/TiO2 catalyst[J]. Mater Chem Phys, 2019,232:88-98. doi: 10.1016/j.matchemphys.2019.04.061

    12. [12]

      ZHANG S B, ZHAO Y C, YANG J P, ZHANG J Y, ZHENG C G. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J, 2018,348:618-629. doi: 10.1016/j.cej.2018.05.037

    13. [13]

      ZHANG Y P, GUO W Q, WANG L F, SONG M, YANG L J, SHEN K, XU H T, ZHOU C C. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx[J]. Chin J Catal, 2015,36(10):1701-1710.  

    14. [14]

      ZHANG J Y, LI C T, ZHAO L Q, WANG T, LI S H, ZENG G M. A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and Hg0 from simulated flue gas[J]. Chem Eng J, 2017,313:1535-1547. doi: 10.1016/j.cej.2016.11.039

    15. [15]

      ITO K, KAKINO S C, IKEUE K T, MACHIDA M. NO adsorption/desorption property of TiO2-ZrO2 having tolerance to SO2 poisoning[J]. Appl Catal B:Environ, 2007,74(1):137-143.  

    16. [16]

      ZHANG L, LI L L, CAO Y, XIONG Y, WU S G, SUN J F, TANG C J, GAO F, DONG L. Promotional effect of doping SnO2 into TiO2 over a CeO2/TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Catal Sci Technol, 2015,5(4):2188-2196. doi: 10.1039/C4CY01412J

    17. [17]

      ZHANG Y P, HUANG T J, XIAO R, XU H T, ZHOU C C. A comparative study on the Mn/TiO2-M(M=Sn, Zr or Al) Ox catalysts for NH3-SCR reaction at low temperature[J]. Environ Technol, 2017,39(10):1-28.  

    18. [18]

      LI Peng, ZHANG Ya-ping, XIAO Rui, SHEN Kai, SUN Ke-qin, XU Hai-tao, ZHOU Chang-cheng. Selective catalytic reduction of NOx with NH3 over V2O5-WO3/TiO2-ZrO2 monolith catalysts[J]. J Cent South Univ (Sci Technol), 2013,44(4):1719-1726.  

    19. [19]

      LI Juan, ZHANG Ya-ping, WANG Wen-xuan, WANG Long-fei, GUO Wan-qiu, YANG Lin-jun, SHEN Kai. Surface properties, NH3 adsorption characteristic and NOx removal mechanism of TiO2-SnO2 supported WO3 catalysts[J]. J Sout Univ (Nat Sci), 2016,46(1):92-99.  

    20. [20]

      LIU J, LI X Y, ZHAO Q D, HAO C, WANG S B, TADÉ M. Combined spectroscopic and theoretical approach to sulfur-poisoning on Cu-Supported Ti-Zr mixed oxide catalyst in the selective catalytic reduction of NO[J]. ACS Catal, 2014,4(8):2426-2436. doi: 10.1021/cs5005739

    21. [21]

      CHEN L, YAO X J, CAO J, YANG F M, TANG C J. DONG L. Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnOx catalyst for low temperature NH3-SCR[J]. Appl Surf Sci, 2019, 476: 283-292.

    22. [22]

      XIE J K, QU Z, YAN N Q, YANG S J, CHEN W M, HU L G, HUANG W J, LIU P. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery[J]. J Hazard Mater, 2013,261:206-213. doi: 10.1016/j.jhazmat.2013.07.027

    23. [23]

      ZHAO L K, LI C T, LI S H, WANG Y, ZHANG J Y, WANG T, ZENG G M. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst[J]. Appl Catal B:Environ, 2016,198:420-430. doi: 10.1016/j.apcatb.2016.05.079

    24. [24]

      XU H M, XIE J K, MA Y P, QU Z, ZHAO S J, CHEN W M, HUANG W J, YAN N Q. The cooperation of FeSn in a MnOx complex sorbent used for capturing elemental mercury[J]. Fuel, 2015,140:803-809. doi: 10.1016/j.fuel.2014.10.004

    25. [25]

      XU H M, QU Z, ZHAO S J, YUE D T, HUANG W J, YAN N Q. Enhancement of heterogeneous oxidation and adsorption of Hg0 in a wide temperature window using SnO2 supported LaMnO3 perovskite oxide[J]. Chem Eng J, 2016,292:123-129. doi: 10.1016/j.cej.2016.01.078

    26. [26]

      DONG L H, TANG Y X, LI B, ZHOU L Y, GONG F Z, HE H X, SUN B Z, TANG C J, GAO F, DONG L. Influence of molar ratio and calcination temperature on the properties of TixSn1-xO2 supporting copper oxide for CO oxidation[J]. Appl Catal B:Environ, 2016,180:451-462. doi: 10.1016/j.apcatb.2015.06.034

    27. [27]

      YANG Y, LI H, ZHAO H T, QU R Y, ZHANG S, HU W S, YU X N, ZHU X B, LIU S J, ZHENG C H, GAO X. Structure and crystal phase transition effect of Sn doping on anatase TiO2 for dichloromethane decomposition[J]. J Hazard Mater, 2019,371:156-164. doi: 10.1016/j.jhazmat.2019.02.103

    28. [28]

      GÁLVEZ-LÓPEZ M F, MUÑOZ-BATISTA M J, ALVARADO-BELTRÁNA C G, ALMARAL-SÁNCHEZ J L, BACHILLER-BAEZA B, KUBACKA A, FERMÁNDEZ-GARCÍAB M. Sn modification of TiO2 anatase and rutile type phases:2-Propanol photo-oxidation under UV and visible light[J]. Appl Catal B:Environ, 2018,228:130-141. doi: 10.1016/j.apcatb.2018.01.075

    29. [29]

      YANG W, LIU Y X, WANG Q, PAN J F. Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation[J]. Chem Eng J, 2017,326:169-181. doi: 10.1016/j.cej.2017.05.106

    30. [30]

      ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qin-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. J Fuel Chem Technol, 2016,44(4):394-400. doi: 10.3969/j.issn.0253-2409.2016.04.002

    31. [31]

      ZHOU Z J, LIU X W, LI C P, ELVIS C X K, XU M H. Seawater-assisted synthesis of MnCe/zeolite-13X for removing elemental mercury from coal-fired flue gas[J]. Fuel, 2020,262116605. doi: 10.1016/j.fuel.2019.116605

    32. [32]

      ZHANG A C, ZHANG Z H, CHEN J J, SHENG W, SUN L S, XIANG J. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal[J]. Fuel Process Technol, 2015,135:25-33. doi: 10.1016/j.fuproc.2014.10.007

    33. [33]

      JIA B H, GUO J X, LUO H D, SHU S, FANG N J, LI J J. Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2-TiO2[J]. Appl Catal A:Gen, 2018,553:82-90. doi: 10.1016/j.apcata.2017.12.016

    34. [34]

      SHAN Y, YANG W, LI Y, LIU Y X, PAN J F. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas[J]. Sci Total Environ, 2019,697134049. doi: 10.1016/j.scitotenv.2019.134049

    35. [35]

      ZHAO H T, YANG G, GAO X, PANG C H, KINGMAN S W, WU T. Hg0 capture over CoMoS/γ-Al2O3 with MoS2 nanosheets at low temperatures[J]. Environ Sci Technol, 2016,50(2):1056-1064. doi: 10.1021/acs.est.5b04278

    36. [36]

      ZHAO H T, EZEH C I, YIN S F, XIE Z L, PANG C H, ZHENG C H, GAO X, WU T. MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+[J]. Appl Catal B:Environ, 2020,263117829. doi: 10.1016/j.apcatb.2019.117829

    37. [37]

      LI J H, CHEN J J, KE R, LUO C K, HAO J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catal Commun, 2007,8(12):1896-1900. doi: 10.1016/j.catcom.2007.03.007

    38. [38]

      WANG S X, GUO R T, PAN W G, CHEN Q L, SUN P, LI M Y, LIU S M. The deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by alkali metals:TPD and DRIFT studies[J]. Catal Commun, 2017,89:143-147. doi: 10.1016/j.catcom.2016.11.005

    39. [39]

      SUN P, GUO R T, LIU S M, WANG S X, PAN W G, LI M Y. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Appl Catal A:Gen, 2017,531:129-138. doi: 10.1016/j.apcata.2016.10.027

    40. [40]

      WU Z B, JIANG B Q, LIU Y, ZHAO W R, GUAN B H. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J]. J Hazard Mater, 2007,145(3):488-494. doi: 10.1016/j.jhazmat.2006.11.045

    41. [41]

      SMIRNIOTIS P G, SREEKANTH P M, PEÑA D A, JENKINS R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:A comparison for low-temperature SCR of NO with NH3[J]. Ind Eng Chem Res, 2006,45(19):6436-6443.  

    42. [42]

      DONG L, HUANG Y J, CHEN H, LIU L Q, LIU C Q, XU L G, ZHA J R, WANG Y X, LIU H. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas[J]. Energy Fuels, 2019,33(8):7522-7533. doi: 10.1021/acs.energyfuels.9b01136

    43. [43]

      LIU Z Y, YANG W, XU W, LIU Y X. Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine[J]. Chem Eng J, 2018,339:468-478. doi: 10.1016/j.cej.2018.01.148

    44. [44]

      LIU D J, ZHOU W G, WU J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017,194:115-122. doi: 10.1016/j.fuel.2016.12.076

    45. [45]

      XU Y L, ZHONG Q, LIU X Y. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature[J]. J Hazard Mater, 2015,283:252-259. doi: 10.1016/j.jhazmat.2014.09.034

    46. [46]

      HE J, REDDY G K, THIEL S W, SMIRNIOTIS P G, PINTO N G. Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas[J]. J Phys Chem C, 2011,115(49):24300-24309. doi: 10.1021/jp208768p

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    7. [7]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    10. [10]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    11. [11]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    17. [17]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    18. [18]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

Metrics
  • PDF Downloads(8)
  • Abstract views(487)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return