Experimental study on the mercury removal from flue gas using manganese modified titanium-zirconium and titanium-tin composite oxide catalysts
- Corresponding author: HUANG Ya-ji, heyyj@seu.edu.cn
Citation:
DONG Lu, HUANG Ya-ji, YUAN Qi, CHENG Hao-qiang, DING Shou-yi, WANG Sheng, DUAN Yu-feng. Experimental study on the mercury removal from flue gas using manganese modified titanium-zirconium and titanium-tin composite oxide catalysts[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(6): 741-751.
ZHAO J X, LI H L, YANG Z Q, ZHU L, ZHANG M G, FENG Y, QU W Q, YANG J P, SHIH K. Dual roles of nano-sulfide in efficient removal of elemental mercury from coal combustion flue gas within a wide temperature range[J]. Environ Sci Technol, 2018,52(21):12926-12933. doi: 10.1021/acs.est.8b04340
ZHAO S L, PUDASAINEE D, DUAN Y F, GUPTA R, LIU M, LU J H. A review on mercury in coal combustion process:Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Prog Energy Combust Sci, 2019,73:26-64. doi: 10.1016/j.pecs.2019.02.001
ZHOU Qiang, DUAN Yu-feng, LU Ping. Research progress on in-duct mercury removal by sorbent injection in power plant[J]. Chem Ind Eng Prog, 2018,37(11):4460-4467.
YANG Z Q, LI H L, YANG J P, FENG S H, LIU X, ZHAO J X, QU W Q, LI P, FENG Y, LEE P H, SHIH K. Nanosized copper selenide functionalized zeolitic imidazolate framework-8(CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Adv Funct Mater, 2019,29(17)1807191. doi: 10.1002/adfm.201807191
WANG Peng-ying, SU Sheng, XIANG Jun, CAO Fan, YOU Mo, HU Song, SUN Lu-shi, ZHANG Liang-ping. Experimental study on NO reduction and Hg0 oxidation over low temperature SCR catalyst[J]. J Combust Sci Technol, 2014,20(5):423-427.
CHI Gui-long, SHEN Bo-xiong, ZHU Shao-wen, HE Chuan. Oxidation of elemental mercury over modified SCR catalysts[J]. J Fuel Chem Technol, 2016,44(6):763-768. doi: 10.3969/j.issn.0253-2409.2016.06.018
ZHAO Li, HE Qing-song, LI Lin, LU Qiang, DONG Chang-qing, YANG Yong-ping. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. J Fuel Chem Technol, 2015,43(5):628-634. doi: 10.3969/j.issn.0253-2409.2015.05.016
GENG Xin-ze, DUAN Yu-feng, HU Peng, LIU Shuai, LIANG Cai. Characteristics of denitrification and mercury removal of Ce-W/TiO2 catalysts in SCR atmosphere[J]. China Environ Sci, 2019,39(4):1419-1426. doi: 10.3969/j.issn.1000-6923.2019.04.009
ZHANG S B, ZHAO Y C, WANG Z H, ZHANG J Y, WANG L L, ZHENG C G. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci, 2017,53:141-150. doi: 10.1016/j.jes.2015.10.038
YU Xian-qun, BAO Jing-jing, JIANG Xiao-xiang, YANG Hong-min. Performance and mechanism of catalytic oxidation for mercury by Mn-doped TiO2 catalysts in flue gas[J]. Proc CSEE, 2015,35(13):3331-3337.
LIU J, GUO R T, SUN X, PAN W G, WANG Z Y, LIU X Y, SHI X, QIN H, HU C X. Simultaneous NO reduction and Hg0 oxidation over Sb modified Mn/TiO2 catalyst[J]. Mater Chem Phys, 2019,232:88-98. doi: 10.1016/j.matchemphys.2019.04.061
ZHANG S B, ZHAO Y C, YANG J P, ZHANG J Y, ZHENG C G. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J, 2018,348:618-629. doi: 10.1016/j.cej.2018.05.037
ZHANG Y P, GUO W Q, WANG L F, SONG M, YANG L J, SHEN K, XU H T, ZHOU C C. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx[J]. Chin J Catal, 2015,36(10):1701-1710.
ZHANG J Y, LI C T, ZHAO L Q, WANG T, LI S H, ZENG G M. A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and Hg0 from simulated flue gas[J]. Chem Eng J, 2017,313:1535-1547. doi: 10.1016/j.cej.2016.11.039
ITO K, KAKINO S C, IKEUE K T, MACHIDA M. NO adsorption/desorption property of TiO2-ZrO2 having tolerance to SO2 poisoning[J]. Appl Catal B:Environ, 2007,74(1):137-143.
ZHANG L, LI L L, CAO Y, XIONG Y, WU S G, SUN J F, TANG C J, GAO F, DONG L. Promotional effect of doping SnO2 into TiO2 over a CeO2/TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Catal Sci Technol, 2015,5(4):2188-2196. doi: 10.1039/C4CY01412J
ZHANG Y P, HUANG T J, XIAO R, XU H T, ZHOU C C. A comparative study on the Mn/TiO2-M(M=Sn, Zr or Al) Ox catalysts for NH3-SCR reaction at low temperature[J]. Environ Technol, 2017,39(10):1-28.
LI Peng, ZHANG Ya-ping, XIAO Rui, SHEN Kai, SUN Ke-qin, XU Hai-tao, ZHOU Chang-cheng. Selective catalytic reduction of NOx with NH3 over V2O5-WO3/TiO2-ZrO2 monolith catalysts[J]. J Cent South Univ (Sci Technol), 2013,44(4):1719-1726.
LI Juan, ZHANG Ya-ping, WANG Wen-xuan, WANG Long-fei, GUO Wan-qiu, YANG Lin-jun, SHEN Kai. Surface properties, NH3 adsorption characteristic and NOx removal mechanism of TiO2-SnO2 supported WO3 catalysts[J]. J Sout Univ (Nat Sci), 2016,46(1):92-99.
LIU J, LI X Y, ZHAO Q D, HAO C, WANG S B, TADÉ M. Combined spectroscopic and theoretical approach to sulfur-poisoning on Cu-Supported Ti-Zr mixed oxide catalyst in the selective catalytic reduction of NO[J]. ACS Catal, 2014,4(8):2426-2436. doi: 10.1021/cs5005739
CHEN L, YAO X J, CAO J, YANG F M, TANG C J. DONG L. Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnOx catalyst for low temperature NH3-SCR[J]. Appl Surf Sci, 2019, 476: 283-292.
XIE J K, QU Z, YAN N Q, YANG S J, CHEN W M, HU L G, HUANG W J, LIU P. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery[J]. J Hazard Mater, 2013,261:206-213. doi: 10.1016/j.jhazmat.2013.07.027
ZHAO L K, LI C T, LI S H, WANG Y, ZHANG J Y, WANG T, ZENG G M. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst[J]. Appl Catal B:Environ, 2016,198:420-430. doi: 10.1016/j.apcatb.2016.05.079
XU H M, XIE J K, MA Y P, QU Z, ZHAO S J, CHEN W M, HUANG W J, YAN N Q. The cooperation of FeSn in a MnOx complex sorbent used for capturing elemental mercury[J]. Fuel, 2015,140:803-809. doi: 10.1016/j.fuel.2014.10.004
XU H M, QU Z, ZHAO S J, YUE D T, HUANG W J, YAN N Q. Enhancement of heterogeneous oxidation and adsorption of Hg0 in a wide temperature window using SnO2 supported LaMnO3 perovskite oxide[J]. Chem Eng J, 2016,292:123-129. doi: 10.1016/j.cej.2016.01.078
DONG L H, TANG Y X, LI B, ZHOU L Y, GONG F Z, HE H X, SUN B Z, TANG C J, GAO F, DONG L. Influence of molar ratio and calcination temperature on the properties of TixSn1-xO2 supporting copper oxide for CO oxidation[J]. Appl Catal B:Environ, 2016,180:451-462. doi: 10.1016/j.apcatb.2015.06.034
YANG Y, LI H, ZHAO H T, QU R Y, ZHANG S, HU W S, YU X N, ZHU X B, LIU S J, ZHENG C H, GAO X. Structure and crystal phase transition effect of Sn doping on anatase TiO2 for dichloromethane decomposition[J]. J Hazard Mater, 2019,371:156-164. doi: 10.1016/j.jhazmat.2019.02.103
GÁLVEZ-LÓPEZ M F, MUÑOZ-BATISTA M J, ALVARADO-BELTRÁNA C G, ALMARAL-SÁNCHEZ J L, BACHILLER-BAEZA B, KUBACKA A, FERMÁNDEZ-GARCÍAB M. Sn modification of TiO2 anatase and rutile type phases:2-Propanol photo-oxidation under UV and visible light[J]. Appl Catal B:Environ, 2018,228:130-141. doi: 10.1016/j.apcatb.2018.01.075
YANG W, LIU Y X, WANG Q, PAN J F. Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation[J]. Chem Eng J, 2017,326:169-181. doi: 10.1016/j.cej.2017.05.106
ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qin-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. J Fuel Chem Technol, 2016,44(4):394-400. doi: 10.3969/j.issn.0253-2409.2016.04.002
ZHOU Z J, LIU X W, LI C P, ELVIS C X K, XU M H. Seawater-assisted synthesis of MnCe/zeolite-13X for removing elemental mercury from coal-fired flue gas[J]. Fuel, 2020,262116605. doi: 10.1016/j.fuel.2019.116605
ZHANG A C, ZHANG Z H, CHEN J J, SHENG W, SUN L S, XIANG J. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal[J]. Fuel Process Technol, 2015,135:25-33. doi: 10.1016/j.fuproc.2014.10.007
JIA B H, GUO J X, LUO H D, SHU S, FANG N J, LI J J. Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2-TiO2[J]. Appl Catal A:Gen, 2018,553:82-90. doi: 10.1016/j.apcata.2017.12.016
SHAN Y, YANG W, LI Y, LIU Y X, PAN J F. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas[J]. Sci Total Environ, 2019,697134049. doi: 10.1016/j.scitotenv.2019.134049
ZHAO H T, YANG G, GAO X, PANG C H, KINGMAN S W, WU T. Hg0 capture over CoMoS/γ-Al2O3 with MoS2 nanosheets at low temperatures[J]. Environ Sci Technol, 2016,50(2):1056-1064. doi: 10.1021/acs.est.5b04278
ZHAO H T, EZEH C I, YIN S F, XIE Z L, PANG C H, ZHENG C H, GAO X, WU T. MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+[J]. Appl Catal B:Environ, 2020,263117829. doi: 10.1016/j.apcatb.2019.117829
LI J H, CHEN J J, KE R, LUO C K, HAO J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catal Commun, 2007,8(12):1896-1900. doi: 10.1016/j.catcom.2007.03.007
WANG S X, GUO R T, PAN W G, CHEN Q L, SUN P, LI M Y, LIU S M. The deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by alkali metals:TPD and DRIFT studies[J]. Catal Commun, 2017,89:143-147. doi: 10.1016/j.catcom.2016.11.005
SUN P, GUO R T, LIU S M, WANG S X, PAN W G, LI M Y. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Appl Catal A:Gen, 2017,531:129-138. doi: 10.1016/j.apcata.2016.10.027
WU Z B, JIANG B Q, LIU Y, ZHAO W R, GUAN B H. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J]. J Hazard Mater, 2007,145(3):488-494. doi: 10.1016/j.jhazmat.2006.11.045
SMIRNIOTIS P G, SREEKANTH P M, PEÑA D A, JENKINS R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:A comparison for low-temperature SCR of NO with NH3[J]. Ind Eng Chem Res, 2006,45(19):6436-6443.
DONG L, HUANG Y J, CHEN H, LIU L Q, LIU C Q, XU L G, ZHA J R, WANG Y X, LIU H. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas[J]. Energy Fuels, 2019,33(8):7522-7533. doi: 10.1021/acs.energyfuels.9b01136
LIU Z Y, YANG W, XU W, LIU Y X. Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine[J]. Chem Eng J, 2018,339:468-478. doi: 10.1016/j.cej.2018.01.148
LIU D J, ZHOU W G, WU J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017,194:115-122. doi: 10.1016/j.fuel.2016.12.076
XU Y L, ZHONG Q, LIU X Y. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature[J]. J Hazard Mater, 2015,283:252-259. doi: 10.1016/j.jhazmat.2014.09.034
HE J, REDDY G K, THIEL S W, SMIRNIOTIS P G, PINTO N G. Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas[J]. J Phys Chem C, 2011,115(49):24300-24309. doi: 10.1021/jp208768p
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
(reaction condition: N2+ 5% O2, 200 ℃)
(reaction condition: N2+ 5% O2, 200 ℃)