Progress in Ammonia Combustion and Reaction Mechanism
- Corresponding author: Huang Hongyu, huanghy@ms.giec.ac.cn
Citation:
Chen Danan, Li Jun, Huang Hongyu, Chen Ying, He Zhaohong, Deng Lisheng. Progress in Ammonia Combustion and Reaction Mechanism[J]. Chemistry,
;2020, 83(6): 508-515.
Prasad S, Singh A, Joshi H C. Resour. Conserv. Recycl., 2007, 50(1): 1~39.
Semelsberger T A, Borup R L, Greene H L. J. Power Sources, 2006, 156(2): 497~511.
Carraretto C, Macor A, Mirandola A, et al. Energy, 2004, 29(12): 2195~2211.
Zamfirescu C, Dincer I. J. Power Sources, 2008, 185(1): 459~465.
Lan R, Irvine J T S, Tao S. Int. J. Hydrogen Energy, 2012, 37(2): 1482~1494.
Chiuta S, Everson R C, Neomagus H W J P, et al. Int. J. Hydrogen Energy, 2013, 38(35): 14968~14991.
Brandhorst H, Tatarchuk B, Cahela D, et al. Ammonia: It's Transformation and Effective Utilization//6th International Energy Conversion Engineering Conference (IECEC). 2008, 5610.
Zamfirescu C, Dincer I. Fuel Process. Technol., 2009, 90(5): 729~737.
Elmøe T D, Sørensen R Z, Quaade U, et al. Chem. Eng. Sci., 2006, 61(8): 2618~2625.
Hummelsh J J S, Rasmus Zink S R, Marina Yu K, et al. J. Am. Chem. Soc., 2006, 128(1): 16~17.
Koike M, Miyagawa H, Suzuoki T, et al. "Ammonia as a hydrogen energy carrier and its application to internal combustion engines, " in Sustainable Vehicle Technologies, Driving the green agenda, pp. 61~70, Gaydon, UK: WoodHead Publishing, 2012.
David W I F, Makepeace J W, Callear S K, et al. J. Am. Chem. Soc., 2014, 136(38): 13082~13085.
Valera-Medina A, Xiao H, Owen-Jones M, et al. Prog. Energy Combust. Sci., 2018, 69: 63~102.
Mørch C S, Bjerre A, Gøttrup M P, et al. Fuel, 2011, 90(2): 854~864.
Liu R, Ting D S K, Checkel M D. Ammonia as a Fuel for SI Engine. SAE Technical Paper, 2003.
Li J, Huang H, Kobayashi N, et al. Int. J. Energy Res., 2014, 38(9): 1214~1223.
Lee J H, Kim J H, Park J H, et al. Int. J. Hydrogen Energy, 2010, 35(3): 1054~1064.
Li J, Huang H, Kobayashi N, et al. Energy, 2017, 126: 796~809.
Joo J M, Lee S, Kwon O C. Int. J. Hydrogen Energy, 2012, 37(8): 6933~6941.
Lee S, Kwon O C. Int. J. Hydrogen Energy, 2011, 36(16): 10117~10128.
Ichikawa A, Hayakawa A, Kitagawa Y, et al. Int. J. Hydrogen Energy, 2015, 40(30): 9570~9578.
Duynslaegher C, Jeanmart H, Vandooren J. Proceed. Combust. Inst., 2009, 32(1): 1277~1284.
Starkman E S, Newhall H K, Sutton R, et al. SAE Transactions, 1967: 765~784.
Frigo S, Gentili R. Int. J. Hydrogen Energy, 2013, 38(3): 1607~1615.
Li J, Huang H, Deng L, et al, Energy, 2019, 175: 604~617.
Ryu K, Zacharakis-Jutz G E, Kong S C. Int. J. Hydrogen Energy, 2014, 39(5): 2390~2398.
Comotti M, Frigo S. Int. J. Hydrogen Energy, 2015, 40(33): 10673~10686.
Westlye F R, Ivarsson A, Schramm J. Fuel, 2013, 111: 239~247.
Valera-Medina A, Pugh D G, Marsh P, et al. Int. J. Hydrogen Energy, 2017, 42(38): 24495~24503.
Kobayashi H, Hayakawa A, Somarathne K D K A, et al. Proceed. Combust. Inst., 2019, 37(1): 109~133.
Okafor E C, Naito Y, Colson S, et al. Combust. Flame, 2019, 204: 162~175.
Barbas M, Costa M, Vranckx S, et al. Combust. Flame, 2015, 162(4): 1294~1303.
Valera-Medina A, Marsh R, Runyon J, et al. Appl. Energy, 2017, 185: 1362~1371.
Kurata O, Iki N, Matsunuma T, et al. Proceed. Combust. Inst., 2017, 36(3): 3351~3359.
Okafor E C, Somarathne K D K A, Ratthanan R, et al. Combust. Flame, 2020, 211: 406~416.
Grannell S M, Assanis D N, Bohac S V, et al. The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine//ASME 2006 international mechanical engineering congress and exposition. 2007: 15~27.
Ryu K, Zacharakis-Jutz G E, Kong S. Appl. Energy, 2014, 116: 206~215.
Boretti A. Int. J. Hydrogen Energy, 2017, 42(10): 7071~7076.
Ryu K, Zacharakis-Jutz G E, Kong S. Appl. Energy, 2014, 113: 488~499.
Fenimore C P, Jones G W. J. Phys. Chem., 1961, 65(2): 298~303.
Kaskan W E, Hughes D E. Combust. Flame, 1973, 20(3): 381~388.
Miller J A, Bowman C T. Prog. Energy Combust. Sci., 1989, 15(4): 287~338.
Lindstedt R P, Lockwood F C, Selim M A. Combust. Sci. Technol., 1994, 99(4-6): 253~276.
Konnov A A, Ruyck J D. Combust. Sci. Technol., 2000, 152(1): 23~37.
Hayakawa A, Goto T, Mimoto R, et al. Fuel, 2015, 159: 98~106.
Duynslaegher C, Jeanmart H, Vandooren J. Combust. Sci. Technol., 2009, 181(8): 1092~1106.
Duynslaegher C, Contino F, Vandooren J, et al. Combust. Flame, 2012, 159(9): 2799~2805.
Song Y, Hashemi H, Christensen J M, et al. Fuel, 2016, 181: 358~365.
Mathieu O, Petersen E L. Combust. Flame, 2015, 162(3): 554~570.
Tian Z, Li Y, Zhang L, et al. Combust. Flame, 2009, 156(7): 1413~1426.
Mendiara T, Glarborg P. Combust. Flame, 2009, 156(10): 1937~1949.
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
Shuyong Zhang , Yaxian Zhu , Wenqing Zhang , Yuzhi Wang , Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
Xuyu WANG , Xinran XIE , Dengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Lijun Dong , Pengcheng Du , Guangnong Lu , Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Xudong Liu , Huili Fan , Junping Xiao , Min Yang , Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047