Citation: Chen Danan, Li Jun, Huang Hongyu, Chen Ying, He Zhaohong, Deng Lisheng. Progress in Ammonia Combustion and Reaction Mechanism[J]. Chemistry, ;2020, 83(6): 508-515. shu

Progress in Ammonia Combustion and Reaction Mechanism

  • Corresponding author: Huang Hongyu, huanghy@ms.giec.ac.cn
  • Received Date: 28 November 2019
    Accepted Date: 13 January 2020

Figures(3)

  • A series of environmental and energy issues today has forced humans to find clean alternative fuels to replace traditional fossil fuels. As a carbon-free fuel, ammonia has the advantages of high energy density, low cost and high safety. In recent years, it has attracted more and more scholars' attention and become a research hotspot. This review introduces the physicochemical properties and combustion characteristics of ammonia fuel. The combustion characteristics of ammonia/various fuels are also discussed in detail, such as burning speed, flame structure, pollutant formation, etc. The application of ammonia in engines and the combustion mechanism are summarized. The problems to be further studied are pointed out and the development direction of the ammonia combustion research is prospected.
  • 加载中
    1. [1]

    2. [2]

      Prasad S, Singh A, Joshi H C. Resour. Conserv. Recycl., 2007, 50(1): 1~39. 

    3. [3]

      Semelsberger T A, Borup R L, Greene H L. J. Power Sources, 2006, 156(2): 497~511. 

    4. [4]

      Carraretto C, Macor A, Mirandola A, et al. Energy, 2004, 29(12): 2195~2211.

    5. [5]

      Dresselhaus G W C M. MRS Bull., 2008, 33(4): 421~428. 

    6. [6]

      Zamfirescu C, Dincer I. J. Power Sources, 2008, 185(1): 459~465. 

    7. [7]

      Avery W H. Int. J. Hydrogen Energy, 1988, 13(12): 761~773. 

    8. [8]

      Lan R, Irvine J T S, Tao S. Int. J. Hydrogen Energy, 2012, 37(2): 1482~1494. 

    9. [9]

      Chiuta S, Everson R C, Neomagus H W J P, et al. Int. J. Hydrogen Energy, 2013, 38(35): 14968~14991. 

    10. [10]

      Brandhorst H, Tatarchuk B, Cahela D, et al. Ammonia: It's Transformation and Effective Utilization//6th International Energy Conversion Engineering Conference (IECEC). 2008, 5610.

    11. [11]

      Wang L, Xia M, Wang H, et al. Joule, 2018, 2(6): 1055~1074. 

    12. [12]

      Zamfirescu C, Dincer I. Fuel Process. Technol., 2009, 90(5): 729~737. 

    13. [13]

      Elmøe T D, Sørensen R Z, Quaade U, et al. Chem. Eng. Sci., 2006, 61(8): 2618~2625. 

    14. [14]

      Hummelsh J J S, Rasmus Zink S R, Marina Yu K, et al. J. Am. Chem. Soc., 2006, 128(1): 16~17. 

    15. [15]

      Koike M, Miyagawa H, Suzuoki T, et al. "Ammonia as a hydrogen energy carrier and its application to internal combustion engines, " in Sustainable Vehicle Technologies, Driving the green agenda, pp. 61~70, Gaydon, UK: WoodHead Publishing, 2012.

    16. [16]

      Siddiqui O, Dincer I. Energy, 2019, 189: 116185. 

    17. [17]

      David W I F, Makepeace J W, Callear S K, et al. J. Am. Chem. Soc., 2014, 136(38): 13082~13085. 

    18. [18]

      Valera-Medina A, Xiao H, Owen-Jones M, et al. Prog. Energy Combust. Sci., 2018, 69: 63~102. 

    19. [19]

    20. [20]

      Mørch C S, Bjerre A, Gøttrup M P, et al. Fuel, 2011, 90(2): 854~864. 

    21. [21]

      Liu R, Ting D S K, Checkel M D. Ammonia as a Fuel for SI Engine. SAE Technical Paper, 2003.

    22. [22]

    23. [23]

      Li J, Huang H, Kobayashi N, et al. Int. J. Energy Res., 2014, 38(9): 1214~1223. 

    24. [24]

      Lee J H, Kim J H, Park J H, et al. Int. J. Hydrogen Energy, 2010, 35(3): 1054~1064. 

    25. [25]

      Li J, Huang H, Kobayashi N, et al. Energy, 2017, 126: 796~809. 

    26. [26]

      Joo J M, Lee S, Kwon O C. Int. J. Hydrogen Energy, 2012, 37(8): 6933~6941. 

    27. [27]

      Lee S, Kwon O C. Int. J. Hydrogen Energy, 2011, 36(16): 10117~10128. 

    28. [28]

      Choi S, Lee S, Kwon O C. Energy, 2015, 85: 503~510. 

    29. [29]

      Ichikawa A, Hayakawa A, Kitagawa Y, et al. Int. J. Hydrogen Energy, 2015, 40(30): 9570~9578. 

    30. [30]

      Duynslaegher C, Jeanmart H, Vandooren J. Proceed. Combust. Inst., 2009, 32(1): 1277~1284. 

    31. [31]

      Starkman E S, Newhall H K, Sutton R, et al. SAE Transactions, 1967: 765~784.

    32. [32]

      Frigo S, Gentili R. Int. J. Hydrogen Energy, 2013, 38(3): 1607~1615. 

    33. [33]

      Li J, Huang H, Deng L, et al, Energy, 2019, 175: 604~617.

    34. [34]

      Ryu K, Zacharakis-Jutz G E, Kong S C. Int. J. Hydrogen Energy, 2014, 39(5): 2390~2398. 

    35. [35]

      Comotti M, Frigo S. Int. J. Hydrogen Energy, 2015, 40(33): 10673~10686. 

    36. [36]

      Westlye F R, Ivarsson A, Schramm J. Fuel, 2013, 111: 239~247. 

    37. [37]

      Ezzat M F, Dincer I. Appl. Energy, 2018, 219: 226~239. 

    38. [38]

      Valera-Medina A, Pugh D G, Marsh P, et al. Int. J. Hydrogen Energy, 2017, 42(38): 24495~24503. 

    39. [39]

      Kobayashi H, Hayakawa A, Somarathne K D K A, et al. Proceed. Combust. Inst., 2019, 37(1): 109~133. 

    40. [40]

      Okafor E C, Naito Y, Colson S, et al. Combust. Flame, 2019, 204: 162~175. 

    41. [41]

      Barbas M, Costa M, Vranckx S, et al. Combust. Flame, 2015, 162(4): 1294~1303. 

    42. [42]

      Jójka J, Ślefarski R. Fuel, 2018, 217: 98~105. 

    43. [43]

      Valera-Medina A, Marsh R, Runyon J, et al. Appl. Energy, 2017, 185: 1362~1371. 

    44. [44]

      Kurata O, Iki N, Matsunuma T, et al. Proceed. Combust. Inst., 2017, 36(3): 3351~3359. 

    45. [45]

      Okafor E C, Somarathne K D K A, Ratthanan R, et al. Combust. Flame, 2020, 211: 406~416. 

    46. [46]

      Grannell S M, Assanis D N, Bohac S V, et al. The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine//ASME 2006 international mechanical engineering congress and exposition. 2007: 15~27.

    47. [47]

      Ryu K, Zacharakis-Jutz G E, Kong S. Appl. Energy, 2014, 116: 206~215. 

    48. [48]

      Reiter A J, Kong S. Fuel, 2011, 90(1): 87~97. 

    49. [49]

      Boretti A. Int. J. Hydrogen Energy, 2017, 42(10): 7071~7076. 

    50. [50]

      Gross C W, Kong S. Fuel, 2013, 103: 1069~1079. 

    51. [51]

      Ryu K, Zacharakis-Jutz G E, Kong S. Appl. Energy, 2014, 113: 488~499. 

    52. [52]

      Fenimore C P, Jones G W. J. Phys. Chem., 1961, 65(2): 298~303. 

    53. [53]

      Fisher C J. Combust. Flame, 1977, 30: 143~149. 

    54. [54]

      Kaskan W E, Hughes D E. Combust. Flame, 1973, 20(3): 381~388. 

    55. [55]

      Miller J A, Bowman C T. Prog. Energy Combust. Sci., 1989, 15(4): 287~338. 

    56. [56]

      Lindstedt R P, Lockwood F C, Selim M A. Combust. Sci. Technol., 1994, 99(4-6): 253~276. 

    57. [57]

      Konnov A A, Ruyck J D. Combust. Sci. Technol., 2000, 152(1): 23~37. 

    58. [58]

      Konnov A A. Combust. Flame, 2009, 156(11): 2093~2105. 

    59. [59]

      Kumar P, Meyer T R. Fuel, 2013, 108: 166~176. 

    60. [60]

      Hayakawa A, Goto T, Mimoto R, et al. Fuel, 2015, 159: 98~106. 

    61. [61]

      Duynslaegher C, Jeanmart H, Vandooren J. Combust. Sci. Technol., 2009, 181(8): 1092~1106. 

    62. [62]

      Duynslaegher C, Contino F, Vandooren J, et al. Combust. Flame, 2012, 159(9): 2799~2805. 

    63. [63]

      Song Y, Hashemi H, Christensen J M, et al. Fuel, 2016, 181: 358~365. 

    64. [64]

      Mathieu O, Petersen E L. Combust. Flame, 2015, 162(3): 554~570. 

    65. [65]

      Nozari H, Karabeyoǧlu A. Fuel, 2015, 159: 223~233. 

    66. [66]

      Tian Z, Li Y, Zhang L, et al. Combust. Flame, 2009, 156(7): 1413~1426. 

    67. [67]

      Mendiara T, Glarborg P. Combust. Flame, 2009, 156(10): 1937~1949. 

  • 加载中
    1. [1]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    2. [2]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    3. [3]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    4. [4]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    5. [5]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    8. [8]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    9. [9]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    18. [18]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    19. [19]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(1416)
  • Abstract views(24479)
  • HTML views(14971)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return