Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels
- Corresponding author: Chalerm Ruangviriyachai, chal_ru@kku.ac.th
Citation:
Maliwan Subsadsana, Pitsanuphong Kham-or, Pakpoom Sangdara, Pirom Suwannasom, Chalerm Ruangviriyachai. Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(7): 805-816.
BOTAS J A, SERRANO D P, GARCIA A, VICENTE J, RAMOS R. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catal Today, 2012,195(1):59-70. doi: 10.1016/j.cattod.2012.04.061
HANSHENG L, SHICHAO H, KE M, QIN W, QINGZE J, KENING S. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether:Effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Appl Catal A:Gen, 2013,450(1):152-159.
BOTAS J A, SERRANO D P, GARCIA A, RAMOS R. Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5[J]. Appl Catal B:Environ, 2014,145(1):205-215.
HAN D, SUN N, LIU J, LI C, SHAN H, YANG C. Synergistic effect of W and P on ZSM-5 and its catalytic performance in the cracking of heavy oil[J]. J Energy Chem, 2014,23(4):519-526. doi: 10.1016/S2095-4956(14)60180-7
WANG X, GAO X, DONG M, ZHAO H, HUANG W. Production of gasoline range hydrocarbons from methanol on hierarchical ZSM-5 and Zn/ZSM-5 catalyst prepared with soft second template[J]. J Energy Chem, 2015,24(4):490-496. doi: 10.1016/j.jechem.2015.06.009
WU G, WU W, WANG X, ZAN W, WANG W, LI C. Nanosized ZSM-5 zeolites:Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene[J]. Microporous Mesoporous Mater, 2013,180(1):187-195.
JINDAN N, CUOZHU L, TIANYOU Z, GUOCHANG D, SHENLIN H, LI W. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013,143(3):267-275. doi: 10.1007/s10562-013-0963-0
QI J, ZHAO T, LI F, SUN G, XU X, MIAO C, WANG H, ZHANG X. Study of cracking of large molecules over a new type meso-ZSM-5 composite zeolite[J]. J Porous Mater, 2010,17(2):177-184. doi: 10.1007/s10934-009-9278-3
TAUFIQURRAHMI N, MOHAMED A R, BHATIA S. Deactivation and coke combustion studies of nanocrystalline zeolite beta in catalytic cracking of used palm oil[J]. Chem Eng J, 2010,163(3):413-421. doi: 10.1016/j.cej.2010.07.049
DAO K Y, MEI L F, YA H Y, YI B S, JIA Y C, YI W F. One-step synthesis of hierarchical-structured ZSM-5 zeolite[J]. J Fuel Chem Technol, 2016,44(11):1363-1369.
NIKOORAZM M, CHOGHAMARANI A G, NOORI N. Preparation and characterization of functionalized Cu (Ⅱ) schiff base complex on mesoporous MCM-41 and its application as effective catalyst for the oxidation of sulfides and oxidative coupling of thiols[J]. J Porous Mater, 2015,22(4):877-885. doi: 10.1007/s10934-015-9961-5
OOI Y S, ZAKARIA R, MOHAMED A R, BHATIA S. Synthesis of composite material MCM-41/beta and its catalytic performance in waste used palm oil cracking[J]. Appl Catal A:Gen, 2004,274(1/2):15-23.
ZHANG H, LI Y. Preparation and characterization of Beta/MCM-41composite zeolite with a stepwise-distributed pore structure[J]. Powder Technol, 2008,183(1):73-78. doi: 10.1016/j.powtec.2007.11.013
GUO W, XIONG C, HUANG L, LI Q. Synthesis and characterization of composite molecular sieves comprising zeolite beta with MCM-41 structures[J]. J Mater Chem, 2001,11(7):1886-1890. doi: 10.1039/b009903l
SONG C M, JIANG J, YAN Z. Synthesis and characterization of MCM-41-type composite materials prepared from ZSM-5 zeolite[J]. J Porous Mater, 2008,15(2):205-211. doi: 10.1007/s10934-007-9121-7
AHMAD M, FARHANA R, RAMAN A A A, BHARGAVA S K. Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline[J]. Energy Convers Manage, 2016,119(1):352-360.
SANG Y, LIU H, HE S, LI H, JIAO Q, WU Q, SUN K. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether[J]. J Energy Chem, 2013,22(5):769-777. doi: 10.1016/S2095-4956(13)60102-3
CHANG N, GU Z, WANG Z, LIU Z, HOU X, WANG J. Study of Y zeolite catalysts for coal tar hydro-cracking in supercritical gasoline[J]. J Porous Mater, 2011,18(5):589-596. doi: 10.1007/s10934-010-9413-1
AKMAZ S, CAGLAYAN P A. Effect of catalyst, temperature, and hydrogen pressure on slurry hydrocracking reactions of naphthalene[J]. Chem Eng Technol, 2015,38(5):917-930. doi: 10.1002/ceat.v38.5
GUTIERREZ A, ARANDES J M, CASTANO P, OLAZAR M, BARONA A, BILBAO J. Effect of temperature in hydrocracking of light cycle oil on a noble metal-supported catalyst for fuel production[J]. Chem Eng Technol, 2012,35(4):653-660. doi: 10.1002/ceat.201100382
BENDEZU S, CID R, FIERRO J L G, LOPEZ AGUDO A. Thiophene hydrodesulfurization on sulfided Ni, W and NiW/USY zeolite catalysts:Effect of the preparation method[J]. Appl Catal A:Gen, 2000,197(1):47-60. doi: 10.1016/S0926-860X(99)00532-3
ZHAO Y, LIN X, LI D. Catalytic hydrocracking of a bitumen -derived asphaltene over NiMo/-Al2O3 at various temperatures[J]. Chem Eng Technol, 2015,38(1):297-303.
ISHIHARA A, ITOH T, NASU H, HASHIMOTO T, DOI T. Hydrocracking of 1-methylnaphthalene/decahydronaphthalene mixture catalyzed by zeolite-alumina composite supported NiMo catalysts[J]. Fuel Process Technol, 2013,116(1):222-227.
KUBICKA D, KALUZA L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts[J]. Appl Catal A:Gen, 2010,372(2):199-208. doi: 10.1016/j.apcata.2009.10.034
ISHIHARA A, FUKUI N, NASU H, HASHIMOTO T. Hydrocracking of soybean oil using zeolite-alumina composite supported NiMo catalysts[J]. Fuel, 2014,134(1):611-617.
CHEN H, WANG Q, ZHANG X, WANG L. Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides[J]. Fuel, 2015,159(1):430-435.
SUBSADSANA M, SANGDARA P, RUANGVIRIYACHAI C. Effect of bimetallic NiW modified crystalline ZSM-5 zeolite on catalytic conversion of crude palm oil and identification of biofuel products[J]. Asia-Pac J Chem Eng, 2017,12(1):147-158. doi: 10.1002/apj.v12.1
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Hao Zhang , Hao Liu , Ke Huang , Qingxiu Xia , Hongjie Xiong , Xiaohui Liu , Hui Jiang , Xuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Yujuan Zhao , Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
a: 12 h; b: 24 h; c: 48 h; d: 72 h
a: 8.5; b: 9.5; c: 10.5; d: 11.5
a: ZSM-5; b: ZSM-5/MCM-41; c: NiMo-ZSM-5/ MCM-41; d: NiW-ZSM-5/MCM-41
(a): ZSM-5; (b): NiMo-ZSM-5; (c): NiW-ZSM-5; (d): ZSM-5/MCM-41; (e): NiMo-ZSM-5/MCM-41; (f): NiW-ZSM-5/MCM-41
(a): ZSM-5/MCM-41; (b): NiMo-ZSM-5/MCM-41; (c): NiW-ZSM-5/MCM-41
(a): MCM-41; (b): ZSM-5; (c): ZSM-5/MCM-41; (d): NiMo-ZSM-5/MCM-41; (e): NiW-ZSM-5/MCM-41
a: MCM-41; b: ZSM-5; c: ZSM-5/MCM-41; d: NiMo-ZSM-5/MCM-41; e: NiW-ZSM-5/MCM-41
(a): NiMo-ZSM-5/MCM-41 (gasoline); (b): NiW-ZSM-5/MCM-41 (gasoline); (c): NiMo-ZSM-5/MCM-41 (kerosene); (d): NiW-ZSM-5/MCM-41 (kerosene); (e): NiMo-ZSM-5/MCM-41 (diesel); (f): NiW-ZSM-5/MCM-41 (diesel)
a: NiMo-ZSM/MCM-41 (gasoline); b: NiW-ZSM-5/MCM-41 (gasoline); c: NiMo-ZSM-5/MCM-41 (kerosene); d: NiW-ZSM-5/MCM-41 (kerosene); e: NiMo-ZSM-5/MCM-41 (diesel); f: NiW-ZSM-5/MCM-41(diesel)