Citation: Maliwan Subsadsana, Pitsanuphong Kham-or, Pakpoom Sangdara, Pirom Suwannasom, Chalerm Ruangviriyachai. Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 805-816. shu

Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels

  • Corresponding author: Chalerm Ruangviriyachai, chal_ru@kku.ac.th
  • Received Date: 23 January 2017
    Revised Date: 2 May 2017

Figures(10)

  • This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil (CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide (CTAB) surfactant with silica-alumina from ZSM-5 zeolite, prepared from natural kaolin by the hydrothermal technique. Subsequently, the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure, confirmed by XRD, SEM, TEM, EDX, NH3-TPD, XRF and N2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products, identified by simulated distillation gas chromatography-flame ionization detector (SimDis GC-FID), are gasoline (150-200 ℃; C5-12), kerosene (250-300 ℃; C5-20) and diesel (350 ℃; C7-20). Moreover, the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference (P > 0.05) at 95% confidence level, evaluated by SPSS analysis.
  • 加载中
    1. [1]

      BOTAS J A, SERRANO D P, GARCIA A, VICENTE J, RAMOS R. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catal Today, 2012,195(1):59-70. doi: 10.1016/j.cattod.2012.04.061

    2. [2]

      HANSHENG L, SHICHAO H, KE M, QIN W, QINGZE J, KENING S. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether:Effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Appl Catal A:Gen, 2013,450(1):152-159.  

    3. [3]

      BOTAS J A, SERRANO D P, GARCIA A, RAMOS R. Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5[J]. Appl Catal B:Environ, 2014,145(1):205-215.  

    4. [4]

      HAN D, SUN N, LIU J, LI C, SHAN H, YANG C. Synergistic effect of W and P on ZSM-5 and its catalytic performance in the cracking of heavy oil[J]. J Energy Chem, 2014,23(4):519-526. doi: 10.1016/S2095-4956(14)60180-7

    5. [5]

      WANG X, GAO X, DONG M, ZHAO H, HUANG W. Production of gasoline range hydrocarbons from methanol on hierarchical ZSM-5 and Zn/ZSM-5 catalyst prepared with soft second template[J]. J Energy Chem, 2015,24(4):490-496. doi: 10.1016/j.jechem.2015.06.009

    6. [6]

      WU G, WU W, WANG X, ZAN W, WANG W, LI C. Nanosized ZSM-5 zeolites:Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene[J]. Microporous Mesoporous Mater, 2013,180(1):187-195.  

    7. [7]

      JINDAN N, CUOZHU L, TIANYOU Z, GUOCHANG D, SHENLIN H, LI W. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013,143(3):267-275. doi: 10.1007/s10562-013-0963-0

    8. [8]

      QI J, ZHAO T, LI F, SUN G, XU X, MIAO C, WANG H, ZHANG X. Study of cracking of large molecules over a new type meso-ZSM-5 composite zeolite[J]. J Porous Mater, 2010,17(2):177-184. doi: 10.1007/s10934-009-9278-3

    9. [9]

      TAUFIQURRAHMI N, MOHAMED A R, BHATIA S. Deactivation and coke combustion studies of nanocrystalline zeolite beta in catalytic cracking of used palm oil[J]. Chem Eng J, 2010,163(3):413-421. doi: 10.1016/j.cej.2010.07.049

    10. [10]

      DAO K Y, MEI L F, YA H Y, YI B S, JIA Y C, YI W F. One-step synthesis of hierarchical-structured ZSM-5 zeolite[J]. J Fuel Chem Technol, 2016,44(11):1363-1369.  

    11. [11]

      NIKOORAZM M, CHOGHAMARANI A G, NOORI N. Preparation and characterization of functionalized Cu (Ⅱ) schiff base complex on mesoporous MCM-41 and its application as effective catalyst for the oxidation of sulfides and oxidative coupling of thiols[J]. J Porous Mater, 2015,22(4):877-885. doi: 10.1007/s10934-015-9961-5

    12. [12]

      OOI Y S, ZAKARIA R, MOHAMED A R, BHATIA S. Synthesis of composite material MCM-41/beta and its catalytic performance in waste used palm oil cracking[J]. Appl Catal A:Gen, 2004,274(1/2):15-23.  

    13. [13]

      ZHANG H, LI Y. Preparation and characterization of Beta/MCM-41composite zeolite with a stepwise-distributed pore structure[J]. Powder Technol, 2008,183(1):73-78. doi: 10.1016/j.powtec.2007.11.013

    14. [14]

      GUO W, XIONG C, HUANG L, LI Q. Synthesis and characterization of composite molecular sieves comprising zeolite beta with MCM-41 structures[J]. J Mater Chem, 2001,11(7):1886-1890. doi: 10.1039/b009903l

    15. [15]

      SONG C M, JIANG J, YAN Z. Synthesis and characterization of MCM-41-type composite materials prepared from ZSM-5 zeolite[J]. J Porous Mater, 2008,15(2):205-211. doi: 10.1007/s10934-007-9121-7

    16. [16]

      AHMAD M, FARHANA R, RAMAN A A A, BHARGAVA S K. Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline[J]. Energy Convers Manage, 2016,119(1):352-360.  

    17. [17]

      SANG Y, LIU H, HE S, LI H, JIAO Q, WU Q, SUN K. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether[J]. J Energy Chem, 2013,22(5):769-777. doi: 10.1016/S2095-4956(13)60102-3

    18. [18]

      CHANG N, GU Z, WANG Z, LIU Z, HOU X, WANG J. Study of Y zeolite catalysts for coal tar hydro-cracking in supercritical gasoline[J]. J Porous Mater, 2011,18(5):589-596. doi: 10.1007/s10934-010-9413-1

    19. [19]

      AKMAZ S, CAGLAYAN P A. Effect of catalyst, temperature, and hydrogen pressure on slurry hydrocracking reactions of naphthalene[J]. Chem Eng Technol, 2015,38(5):917-930. doi: 10.1002/ceat.v38.5

    20. [20]

      GUTIERREZ A, ARANDES J M, CASTANO P, OLAZAR M, BARONA A, BILBAO J. Effect of temperature in hydrocracking of light cycle oil on a noble metal-supported catalyst for fuel production[J]. Chem Eng Technol, 2012,35(4):653-660. doi: 10.1002/ceat.201100382

    21. [21]

      BENDEZU S, CID R, FIERRO J L G, LOPEZ AGUDO A. Thiophene hydrodesulfurization on sulfided Ni, W and NiW/USY zeolite catalysts:Effect of the preparation method[J]. Appl Catal A:Gen, 2000,197(1):47-60. doi: 10.1016/S0926-860X(99)00532-3

    22. [22]

      ZHAO Y, LIN X, LI D. Catalytic hydrocracking of a bitumen -derived asphaltene over NiMo/-Al2O3 at various temperatures[J]. Chem Eng Technol, 2015,38(1):297-303.

    23. [23]

      ISHIHARA A, ITOH T, NASU H, HASHIMOTO T, DOI T. Hydrocracking of 1-methylnaphthalene/decahydronaphthalene mixture catalyzed by zeolite-alumina composite supported NiMo catalysts[J]. Fuel Process Technol, 2013,116(1):222-227.  

    24. [24]

      KUBICKA D, KALUZA L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts[J]. Appl Catal A:Gen, 2010,372(2):199-208. doi: 10.1016/j.apcata.2009.10.034

    25. [25]

      ISHIHARA A, FUKUI N, NASU H, HASHIMOTO T. Hydrocracking of soybean oil using zeolite-alumina composite supported NiMo catalysts[J]. Fuel, 2014,134(1):611-617.  

    26. [26]

      CHEN H, WANG Q, ZHANG X, WANG L. Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides[J]. Fuel, 2015,159(1):430-435.  

    27. [27]

      SUBSADSANA M, SANGDARA P, RUANGVIRIYACHAI C. Effect of bimetallic NiW modified crystalline ZSM-5 zeolite on catalytic conversion of crude palm oil and identification of biofuel products[J]. Asia-Pac J Chem Eng, 2017,12(1):147-158. doi: 10.1002/apj.v12.1

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    3. [3]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    6. [6]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    7. [7]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    10. [10]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    11. [11]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    12. [12]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    15. [15]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    16. [16]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    17. [17]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    18. [18]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    19. [19]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    20. [20]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

Metrics
  • PDF Downloads(11)
  • Abstract views(1080)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return