Citation: XIONG Qing-an, LI Jia-zhou, LI Chun-yu, GUO Shuai, ZHAO Jian-tao, FANG Yi-tian. Migration and transformation behaviors of vanadium (V) with different occurrence modes during combustion of high sulfur petroleum coke[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 145-151. shu

Migration and transformation behaviors of vanadium (V) with different occurrence modes during combustion of high sulfur petroleum coke

  • Corresponding author: ZHAO Jian-tao, zhaojt@sxicc.an.cn
  • Received Date: 22 September 2017
    Revised Date: 2 January 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21576276, 21506241) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07050100)the National Natural Science Foundation of China 21506241Strategic Priority Research Program of the Chinese Academy of Sciences XDA07050100the National Natural Science Foundation of China 21576276

Figures(8)

  • The occurrence modes and migration behavior of vanadium were investigated by sequential chemical extraction combined with ICP-OES during combustion of high-sulfur petroleum coke. The chemical reaction mechanism was discussed based on thermodynamic analysis. The vanadium in raw petroleum coke is mainly associated with organic matter and stable forms. With increasing temperature organic V disappear and the released vanadium could react with minerals such as Ca, K, Na, Fe to form different vanadium species including water soluble and ion exchange state, carbonates and Fe-Mn oxides. Steady-state vanadium is mainly combined with other minerals to form amorphous substance existing in petroleum coke. These amorphous substances might transform and release vanadium species at high combustion temperatures. The V volatility is correlated with temperature and burn out rate. The volatility may sharply rise because organic matter decomposed and released gaseous VO2 above 1100℃.
  • 加载中
    1. [1]

      JIN Yan-chun. Supply and demand status and prediction of domestic petroleum coke market[J]. Econ Anal China Pet Chem Ind, 2016(3):57-60.  

    2. [2]

      BRYERS R W. Utilization of petroleum coke and petroleum coke/coal blends as a means of steam raising[J]. Fuel Process Technol, 1995,44(1/3):121-141.  

    3. [3]

      CHEN J, LU X. Progress of petroleum coke combusting in circulating fluidized bed boilers-A review and future perspectives[J]. Resour Conserv Recycl, 2007,49(3):203-216.  

    4. [4]

      ZYCHLINSKI L, BYCZKOWSKI J Z, KULKARNI A P. Toxic effects of long-term intratracheal administration of vanadium pentoxide in rats[J]. Arch Environ Contam Toxicol, 1991,20(3):295-298. doi: 10.1007/BF01064393

    5. [5]

      KELEMEN S R, SISKIN M, GORBATY M L, FERRUGHELLI D T, KWIATEK P J, BROWN L D, EPPIG C P, KENNEDY R J. Delayed coker coke morphology fundamentals:Mechanistic implications based on XPS analysis of the composition of vanadium-and nickel-containing additives during coke formation[J]. Energy Fuels, 2007,21(2):927-940. doi: 10.1021/ef060493e

    6. [6]

      AMORIM F A C, WELZ B, COSTA A C, LEPRI F G, VALE M G, FERREIRA S L. Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques[J]. Talanta, 2007,72(2):349-359. doi: 10.1016/j.talanta.2006.12.015

    7. [7]

      ZULIANI J E, MIYATA T, MIZOGUCHI T, FENG J, KIRK D W, JIA C Q. Characterization of vanadium in oil sands fluid petroleum coke using electron microscopy[J]. Fuel, 2016,178:124-128. doi: 10.1016/j.fuel.2016.03.015

    8. [8]

      CONN R. Environmental evaluation of CFB ash from petroleum coke[C]//Abstracts of Papers of the American Chemical Society. 115516TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC, 1998, 216: U768-U768.

    9. [9]

      JIA L, ANTHONY E J, CHARLAND J P. Investigation of vanadium compounds in ashes from a CFBC firing petroleum coke[J]. Energy Fuels, 2002,16(2):397-403. doi: 10.1021/ef010238o

    10. [10]

      LI Y, ZHANG J, ZHAO Y, ZHENG C. Volatility and speciation of mercury during pyrolysis and gasification of five Chinese coals[J]. Energy Fuels, 2011,25(9):3988-3996. doi: 10.1021/ef2006904

    11. [11]

      TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem, 1979,51(7):844-851. doi: 10.1021/ac50043a017

    12. [12]

      LI J Z, ZHAO J T, FANG H B, LIU T, FANG Y T. Transformation behavior of vanadium in petroleum coke during high temperature CO2-gasification[J]. Fuel, 2017,194:83-90. doi: 10.1016/j.fuel.2017.01.002

    13. [13]

      SOROKINA T P, BULUCHEVSKAYA L A, POTAPENKO O V, DORONIN V P. Conversion of nickel and vanadium porphyrins under catalytic cracking conditions[J]. Petrol Chem, 2010,50(1):51-55. doi: 10.1134/S096554411001007X

    14. [14]

      LI J Z, ZHAO J T, ZHANG L X, DAI X, FANG Y T. Predicting the vanadium speciation during petroleum coke combustion by thermodynamic equilibrium calculation[J]. J Therm Anal Calorim, :1-9.  

    15. [15]

      LEE J D. Concise Inorganic Chemistry[M]. Oxford:Blackwell Science Ltd. 1998, 979.

    16. [16]

      BUNT J R, WAANDERS F B. Trace element behaviour in the Sasol-Lurgi fixed-bed dry-bottom gasifier. Part 2-The semi-volatile elements:Cu, Mo, Ni and Zn[J]. Fuel, 2009,88(6):961-969. doi: 10.1016/j.fuel.2008.10.041

  • 加载中
    1. [1]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    2. [2]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    3. [3]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    4. [4]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    5. [5]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    7. [7]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    8. [8]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    9. [9]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    13. [13]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    14. [14]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

Metrics
  • PDF Downloads(6)
  • Abstract views(4113)
  • HTML views(1810)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return