Citation: Liu Jun, Zhou Quan, Xie Jiaqi, Lai Shenzhi. Application of Pd-based Catalysts for Hydrogen Evolution from Formic Acid Decomposition[J]. Chemistry, ;2020, 83(1): 17-22. shu

Application of Pd-based Catalysts for Hydrogen Evolution from Formic Acid Decomposition

  • Corresponding author: Lai Shenzhi, 1395561744@qq.com
  • Received Date: 1 June 2019
    Accepted Date: 8 October 2019

Figures(6)

  • Formic acid is the simplest carboxylic acid. It is colorless, low toxicity, and easy to transport and store at room temperature. Recently, formic acid is one of the most promising hydrogen storage materials, and the use of heterogeneous catalysts to decompose formic acid to produce hydrogen at room temperature has attracted wide attention of researchers. Compared to the other catalysts, Pd-based catalysts exhibit excellent performance for the decomposition of formic acid to yield hydrogen under mild condition. The properties and preparation methods of Pd-based catalysts and the applications in the fields of the production of hydrogen from formic acid decomposition are reviewed. The future research directions of Pd-based catalysts are also discussed.
  • 加载中
    1. [1]

      Dresselhaus M S, Thomas I L. Nature, 2001, 414:332~337. 

    2. [2]

      Bak T, Nowotny J, Rekas M, et al. Int. J. Hydrogen Energy, 2002, 27:991~1022. 

    3. [3]

      Niaz S, Manzoor T, Pandith A H. Renew. Sustain. Energy Rev., 2015, 50:457~469. 

    4. [4]

      Olah G A, Goeppert A, Prakash G K S. J. Org. Chem., 2009, 74:487~498. 

    5. [5]

      Enthaler S, Langermann J, Schmidt T. Energy Environ. Sci., 2010, 3:1207~1217. 

    6. [6]

      Henricks V, Yuranov I, Autissier N, et al. Catalysts, 2017, 7:348~356. 

    7. [7]

      Liu J, Lan L X, Wu C, et al. Chem. Res. Chin. Univ., 2016, 32:272~277. 

    8. [8]

      Tedsree K, Li T, Jones S, et al. Nat. Nanotechnol., 2011, 6:302~307. 

    9. [9]

      Jiang K, Xu K, Zou S, et al. J. Am. Chem. Soc., 2014, 136:4861~4864. 

    10. [10]

      Yan J M, Wang Z L, Gu L, et al. Adv. Energy Mater., 2015, 5:1500107~1500113. 

    11. [11]

      Bi Q Y, Lin J D, Liu Y M, et al. Angew. Chem. Int. Ed., 2016, 55:11849~11853. 

    12. [12]

      Yadav M, Singh A K, Tsumori N, et al. J. Mater. Chem., 2012, 22:19146~19150. 

    13. [13]

      Zhu Q L, Tsumori N, Xu Q. Chem. Sci., 2014,5:195~199. 

    14. [14]

      Song F Z, Zhu Q L, Tsumori N, et al. ACS Catal., 2015, 5:5141~5144. 

    15. [15]

      Li Z, Yang X, Tsumori N, et al. ACS Catal., 2017, 7:2720~2724. 

    16. [16]

      Zhang S, Jiang B, Jiang K, et al. ACS Appl. Mater. Interf., 2017, 9:24678~24687. 

    17. [17]

      Bi Q Y, Lin J D, Liu Y M, et al. Angew. Chem. Int. Ed., 2014, 53:13583~13587. 

    18. [18]

      Cai Y Y, Li X H, Zhang Y N, et al. Angew. Chem. Int. Ed., 2013, 52:11822~11825. 

    19. [19]

      Lv Q, Feng L, Hu C, et al. Catal. Sci. Technol., 2015, 5:2581~2584. 

    20. [20]

      Lv Q, Meng Q, Liu W, et al. J. Phys. Chem. C, 2018, 122:2081~2088. 

    21. [21]

      Wang N, Sun Q, Bai R, et al. J. Am. Chem. Soc., 2016, 138:7484~7487. 

    22. [22]

      Sun Q, Wang N, Bing Q, et al. Inside Chem., 2017, 3:477~493. 

    23. [23]

      Liu J, Cao L, Xia Y, et al. Int. J. Electrochem. Sci., 2013, 8:9435~9441. 

    24. [24]

      Liu J, Lan L X, Li R, et al. Int. J. Hydrogen Energ., 2016, 41:951~958 

    25. [25]

      Zhou X, Huang Y, Xing W, et al. Chem. Commun., 2008, 3:3540~3542. 

    26. [26]

      Gu X, Lu Z H, Jiang H L, et al. J. Am. Chem. Soc., 2011, 133:11822~11825. 

    27. [27]

      Song F Z, Zhu Q L, Yang X, et al. Adv. Energy Mater., 2018, 8:1416~1421. 

    28. [28]

      Zhang S, Metin O, Su D, et al. Angew. Chem. Int. Ed., 2013, 52:3681~3684. 

    29. [29]

      Ping Y, Yan J M, Wang Z L, et al. J. Mater. Chem., 2013, 1:12188~12191. 

    30. [30]

      Chen Y, Zhu Q L, Tsumori N, et al. J. Am. Chem. Soc., 2015, 137:106~109. 

    31. [31]

      Bulut A, Yurderi M, Karatas Y, et al. ACS Catal., 2015, 5:6099~6110. 

    32. [32]

      Gao S T, Liu W, Feng C, et al. Catal. Sci. Technol., 2016, 6:869~874. 

    33. [33]

      Huang Y, Zhou X, Yin M, et al. Chem. Mater., 2010, 22:5122~5128. 

    34. [34]

      Hattori M, Einaga H, Daio T, et al. J. Mater. Chem., 2015, 3:4453~4461. 

    35. [35]

      Hattori M, Shimamoto D, Ago H, et al. J. Mater. Chem., 2015, 3:10666~10670. 

    36. [36]

      Wang Z L, Yan J M, Ping Y, et al. Angew. Chem. Int. Ed., 2013, 52:4406~4409. 

    37. [37]

      Yurderi M, Bulut A, Zahmakiran M, et al. Appl. Catal. B, 2014, 160:514~524. 

    38. [38]

      Yurderi M, Bulut A, Caner N, et al. Chem. Commun., 2015, 51:11417~11420. 

    39. [39]

      Yang L, Luo W, Cheng G. Int. J. Hydrogen Energy, 2016, 41:439~446. 

  • 加载中
    1. [1]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    2. [2]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    6. [6]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    14. [14]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    15. [15]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(15)
  • Abstract views(1095)
  • HTML views(298)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return