Citation: LIANG Yan-zheng, WANG Xue-tao, LUO Shao-feng, ZHOU Yu-feng. Performance of the modified Cu-Mn/SAPO-34 catalysts in the selective catalytic reduction of NOx by NH3[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 728-734. shu

Performance of the modified Cu-Mn/SAPO-34 catalysts in the selective catalytic reduction of NOx by NH3

  • Corresponding author: WANG Xue-tao, wxt7682@163.com
  • Received Date: 12 May 2020
    Revised Date: 1 June 2020

    Fund Project: National Natural Science Foundation of China 50806020Henan Science and Technology Innovation Talent Program (Outstanding Youth) 114100510010The project was supported by National Natural Science Foundation of China (50806020), Henan Science and Technology Innovation Talent Program (Outstanding Youth) (114100510010) and Project Supported by National Natural Science Foundation of Henan Province (182300410256)Project Supported by National Natural Science Foundation of Henan Province 182300410256

Figures(7)

  • A series of Cu-Mn/SAPO-34 catalysts with different mass ratios of Cu to Mn were prepared by impregnation method. The influence of Cu and Mn loading on the denitrification performance was investigated in a fixed-bed reactor. XRD, NH3-TPD, H2-TPR, XPS were used to characterize and analyze the catalysts. The results show that the bimetallic modified Cu-Mn/SAPO-34 have excellent catalytic activity and broad active temperature window. Especially, the Cu-Mn/SAPO-34/1:4 catalyst with a Cu/Mn mass ratio of 1:4 has the widest active temperature window, its denitrification rates could reach 85.39% at 250℃, 96% at 300-400℃, and up to 90% at 450℃. Cu and Mn species are highly dispersed on the surface of the catalyst and do not change the crystal structure of SAPO-34. Co-doping of Cu and Mn promotes the transformation of Cu2+ to Cu+, increases the ratio of Mn4+ to Mn3+, improves the activity at low temperature and promotes the catalytic reaction. Cu-Mn/SAPO-34/1:4 catalyst has rich acid sites, good redox performance and resistance to SO2 and H2O, which can improve the activity and stability of the catalysts.
  • 加载中
    1. [1]

      GUO Feng, YU Jian, MU Yang, CHU Mo, XU Guang-wen. Preparation of catalyst with wide working-temperature and the reaction mechanism of flue gas denitration[J]. J Fuel Chem Technol, 2014,42(1):101-109.  

    2. [2]

      HU Hai-peng, WANG Xue-tao, ZHANG Xing-yu, SU Xiao-xin, YANG Xiao-dong, SHI Rui-hua. Performance of Fe-Cu/ZSM-5 catalyst in the DeNOx process via NH3-SCR[J]. J Fuel Chem Technol, 2018,46(2):225-232. doi: 10.3969/j.issn.0253-2409.2018.02.013

    3. [3]

      XIONG Zhi-bo, LU Chun-mei. Study on the modification of iron-cerium mixed oxide catalyst for selective catalytic reduction of NO[J]. J Fuel Chem Technol, 2013,41(3):361-367. doi: 10.3969/j.issn.0253-2409.2013.03.016 

    4. [4]

      PANAHI P N, SALARI D, TSENG H H, NIAEI A, MOUSAVI S M. Effect of the preparation method on activity of Cu-ZSM-5 nanocatalyst for the selective reduction of NO by NH3[J]. Environ Technol, 2017,38(15):1852-1861. doi: 10.1080/09593330.2016.1238964

    5. [5]

      VENNESTRØM P N R, JANSSENS T V W, KUSTOV A, GRILL M, PUIG-MOLINA A, LUNDEGAARD L F, TIRUVALAM R R, CONCEPCIÓN P, CORMA A. Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NOx by NH3[J]. J Catal, 2014,309:477-490. doi: 10.1016/j.jcat.2013.10.017

    6. [6]

      PARK J H, PARK H J, BAIK J H, NAM I S, SHIN C H, LEE J H, CHO B K, OH S H. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. J Catal, 2006,240(1):47-57.  

    7. [7]

      YAN C D, CHENG H, YUAN Z S, WANG S D. The role of isolated Cu2+ location in structural stability of Cu-modified SAPO-34 in NH3-SCR of NO[J]. Environ Technol, 2015,36(2):169-177.  

    8. [8]

      HUANG L M, WANG X M, YAO S L, JIANG B Q, CHEN X Y, WANG X. Cu-Mn bimetal ion-exchanged SAPO-34 as an active SCR catalyst for removal of NOx from diesel engine exhausts[J]. Catal Commun, 2016,81:54-57. doi: 10.1016/j.catcom.2016.03.010

    9. [9]

      QIAO Nan-li, YANG Yi-xin, LIU Qing-long, SONG Huan-qiao, YU Geng-zhi, LUO Ming-sheng. Influence of different supports on the physicochemical properties and denitration performance of the supported MnCe-based catalysts for NH3-SCR[J]. J Fuel Chem Technol, 2018,46(6):733-742. doi: 10.3969/j.issn.0253-2409.2018.06.012 

    10. [10]

      TAN J, LIU Z M, BAO X H, LIU X C, HAN X W, HE C Q, ZHAI R S. Crystallization and Si incorporation mechanisms of SAPO-34[J]. Microporous Mesoporous Mater, 2002,53(1):97-108.  

    11. [11]

      LIU G Y, TIAN P, LI J Z, ZHANG D Z, FAN Z, LIU Z M. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template[J]. Microporous Mesoporous Mater, 2008,111(1):143-149.  

    12. [12]

      ZHU Yan-tao, LÜ Gang, SONG Chong-lin, LI Bo, CHEN Ke. Catalytic oxidation of soot over monovalent copper modified ZSM-5[J]. J Fuel Chem Technol, 2017,45(1):106-112. doi: 10.3969/j.issn.0253-2409.2017.01.015

    13. [13]

      CAO Y, LAN L, FENG X, YANG Z Z, ZOU S, XU H D, LI Z Q, GONG M C, CHEN Y Q. Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH3-SCR monolith catalyst[J]. Catal Sci Technol, 2015,5(9):4511-4521. doi: 10.1039/C5CY00704F

    14. [14]

      ZHANG Qiang, LIU Lu, YU Meng-yun, ZHOU Zhou. Effect of sulfuric acid modification of Al2O3 support on the SCR performance of MnCe/Al2O3 catalysts[J]. J Fuel Chem Technol, 2019,47(9):1137-1145. doi: 10.3969/j.issn.0253-2409.2019.09.014 

    15. [15]

      FANG Qi-long, ZHU Bao-zhong, SUN Yun-lan, YIN Shou-lai, ZI Zhao-hui, SHI Jin-xing, LI Guo-bo. Study on the performance of low temperature De-NOx based on Mn-Fe/Al2O3 catalysts[J]. J Mol Catal, 2018,32(4):18-27.  

    16. [16]

      HUANG Zeng-bin, LI Cui-qing, WANG Zhen, XU Sheng-mei, FENG Ling-bo, WANG Hong, SONG Yong-ji, ZHANG Wei. Performance of Mn-Ce catalysts supported on different zeolites in the NH3-SCR of NOx[J]. J Fuel Chem Technol, 2016,44(11):1388-1393. doi: 10.3969/j.issn.0253-2409.2016.11.016

    17. [17]

      LONG R Q, YANG R T. Temperature-programmed desorption/surface reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia[J]. J Catal, 2001,198(1):20-28.  

    18. [18]

      YANG Ying-xin, MA Jie-wen, YU Cheng-long, SUN Meng-ting, HUNAG Bi-chun, WU You-ming. Low temperature NH3-SCR activity of manganese oxides supported on different SAPO molecular sieves catalysts[J]. Acta Sci Circumstantiae, 2016,36(9):3400-3408.  

    19. [19]

      WANG C, ZHAO Y, ZHANG C, YAN X, CAO P. Effect of iron doping on SO2 and H2O resistance of honeycomb cordierite-based Mn-Ce/Al2O3 catalyst for NO removal at low temperature[J]. Res Chem Intermed, 2018,44(5):3135-3150. doi: 10.1007/s11164-018-3297-0

    20. [20]

      KAPTELJN F, SMGOREDJO L, ANDREML A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1994,3(3):173-189.  

    21. [21]

      LIU Q, FU Z, MA L, NIU H, LIU C, LI J, ZHANG Z. MnOx-CeO2 supported on Cu-SSZ-13:A novel SCR catalyst in a wide temperature range[J]. Appl Catal A:Gen, 2017,547:146-154. doi: 10.1016/j.apcata.2017.08.024

    22. [22]

      ZAHNG Chuan, GUO Fang, XU Jun-qaing, QIN Ya-hua, XIE Jia-qing. Influence of Ce and Zr Modified Mn/ZSM-5 Catalyst on C3H6-SCR Reaction Performance[J]. J Chin Ceram Soc, 2019,47(4):486-493.  

    23. [23]

      PANAHI P N. MnOx catalysts supported on γ-Al2O3, ZSM-5, and SAPO-34:Effect of support on the activity of Mn supported catalysts in NO abatement by NH3[J]. Russ J Appl Chem, 2016,89(8):1365-1371. doi: 10.1134/S1070427216080243

    24. [24]

      LUO Hang. Preparation of Mn/SAPO-34 molecular sieve catalyst and NH3-SCR performance at low temperature[D]. Chongqing: Chongqing University, 2018.

    25. [25]

      TANG Nan, HUANG Yan, LI Yuan-yuan, ZHAO Yong-qian, ZHOU Ting, ZHANG Jun-feng, YANG Liu-chun. Low temperature selective catalytic reduction of NO with NH3 over Fe-Mn catalysts prepared by hydrothermal method[J]. J Mol Catal, 2018,32(3):240-248.  

    26. [26]

      JIN Q, SHEN Y, ZHU S, LI X, HU M. Promotional effects of erincorporation in CeO2 (ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J]. Chin J Catal, 2016,37(9):1521-1528. doi: 10.1016/S1872-2067(16)62450-6

    27. [27]

      WAN Yi-ling, ZHANG Chuan-hui, GUO Yang-long, GUO Yun, LU Guan-zhong. Catalytic combustion of vinyl chloride emission over CeO2-MnOx catalyst[J]. Chin J Catal, 2012,33(3):557-562.

    28. [28]

      HE Peng-fei, SHEN De-kui, LIU Guo-fu. NH3-SCR performance of modified SAPO-34 molecular sieve[J]. J Southeast Univ:Nat Sci Ed, 2017,47(3):513-520.  

    29. [29]

      SHAN J H, LIU X Q, SUN L B, RONG C. Cu-Ce bimetal ion-exchanged Y zeolites for selective adsorption of thiophenic sulfur[J]. Energy Fuels, 2008,22(6):3955-3959. doi: 10.1021/ef800296n

    30. [30]

      CHOI E Y, NAM I S, KIM Y G. TPD study of mordenite-type zeolites for selective catalytic reduction of NO by NH3[J]. J Catal, 1996,161(2):597-604.  

    31. [31]

      WANG C, WANG J, WANG J Q, YU T, SHEN M Q, WANG W L, LI W. The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34[J]. Appl Catal B:Environ, 2017,204:239-249. doi: 10.1016/j.apcatb.2016.11.033

    32. [32]

      CHEN Xiao-xue, SONG Min, MENG Fan-yue, WEI Yue-xing. Mechanism study on SO2 poisoning of FexMnCe1-AC catalyst for low-temperature SCR[J]. CIESC J, 2019,70(8):3000-3010.  

    33. [33]

      WANG Xiao-bo, GUI Ke-ting. Low-temperature selective catalytic reduction of NO with NH3 over Iron based catalysts[J]. J Eng Thermophys, 2013,34(9):1671-1674.  

    34. [34]

      QIAO J S, WANG N, WANG Z H, SUN W, SUN K N. Porous bimetallic Mn2Co1Ox catalysts prepared by a one-step combustion method for the low temperature selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2015,72:111-115. doi: 10.1016/j.catcom.2015.09.023

    35. [35]

      LIU G F, ZHANG W J, HE P F, GUAN S P, YUAN B, LI R, SUN Y, SHEN D K. H2O and/or SO2 tolerance of Cu-Mn/SAPO-34 catalyst for NO reduction with NH3 at low temperature[J]. Catal, 2019,9(3)289. doi: 10.3390/catal9030289

    36. [36]

      SHU Yun, ZHANG Fan, WANG Chang, SHI Ying-jie, ZHU Jin-wei. Sulfur resistance of rice husk based activated carbon catalyst for the low-temperature selective catalytic reduction of NO by NH3[J]. Chin Environ Sci, 2019,39(11):4620-4627. doi: 10.3969/j.issn.1000-6923.2019.11.017

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    4. [4]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(4)
  • Abstract views(335)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return