Citation: LI Di, LI Pan, WANG Xian-hua, SHAO Jing-ai, YANG Hai-ping, CHEN Han-ping. Experimental study on bio-oil from catalytic pyrolysis on Fe modified HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 540-547. shu

Experimental study on bio-oil from catalytic pyrolysis on Fe modified HZSM-5

  • Corresponding author: WANG Xian-hua, wangxianhua@hust.edu.cn
  • Received Date: 10 November 2015
    Revised Date: 29 January 2016

    Fund Project: Special Fund for Agro-Scientific Research in the Public Interest 201303095the Major State Basic Research Development Program of China 973 programthe National Natural Science Foundation of China 51376075the Major State Basic Research Development Program of China 973 program, 2013CB228102

Figures(6)

  • The 2% Fe modified HZSM-5 zeolite catalysts were prepared by ion-exchange and characterized by laser particle size analyzer, specific surface area and pore size analyzer, and X-ray diffraction (XRD) to investigate the pore and surface properties. The catalytic pyrolysis of wood was carried out at 550 ℃ to get the maximum oil yield. After pyrolysis, the bio-oil was separated to the lighter (upper layer) and heavier component (bottom layer). The results indicate that with Fe modified HZSM-5 catalysts, the bio-oil yield increases significantly (maximum 7%) the same as that of the lighter one, while the heavier one is nearly constant. Ketones and furans in the lighter oil decreases, while acids and phenols increase significantly; in the heavier oil, ketones and furans decreased dramatically, phenols and naphthalenes increase significantly. The Fe modified HZSM-5 catalysts play an important role in pyrolysis of wood dusts, and have a critical influence on oil yield because the modified catalysts promote the shape-selective modifying of the initial pyrolysis steam and inhibit the secondary coking reaction of steam. The product tends to much lighter bio-oil component and lower oxygen content.
  • 加载中
    1. [1]

      KLASS D L. Biomass for renewable energy, fuels and chemicals[J]. Bio Renew Energy Fuels Chem, 1998,29(12):1028-1037.

    2. [2]

      MA Guang-peng, ZHANG Ying. Discussions on current situation and problems of biomass energy development in China[J]. Manage Agri Sci Technol, 2013,32(1):20-2.  

    3. [3]

      TIAN Yuan-yu, QIAO Ying-yun. Discussion of low charbon development model based on biological sequestration[J]. J Green Sci Technol, 2013(7):156-158.  

    4. [4]

      LU Q, ZHANG Z B, ZHANG C J, SU S H, LI W Y, DONG C Q. Overview of chemical characterization of biomass fast pyrolysis oils[J]. Appl Mech Mater, 2012,130-134:422-425.  

    5. [5]

      ZHANG M J, LI W Z, ZU S, HUO W, ZHU X F, WANG Z Y. Catalytic hydrogenation for bio-oil upgrading by a supported nimob amorphous alloy[J]. Chem Eng Technol, 2013,36(36):2108-2116.  

    6. [6]

      ZHANG X L, YANG W H, DONG C Q. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor[J]. Bioresour Technol, 2009,100(3):1428-1434. doi: 10.1016/j.biortech.2008.08.031

    7. [7]

      ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, DELIMITIS A, LAPPAS A A, TRIANTAFYLLIDIS K S. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Appl Catal B: Environ, 2012,127(17):281-290.  

    8. [8]

      FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Process Technol, 2010,91(1):25-32. doi: 10.1016/j.fuproc.2009.08.011

    9. [9]

      YU Ning, CAI Yi-xi, LI Xiao-hua, FAN Yong-sheng, YIN Yun-hai, ZHANG Rong-xian. Catalytic pyrolysis of rape straw for upgraded bio-oil production using HZSM-5 zeolite[J]. Trans CSAE, 2014,30(15):264-271.  

    10. [10]

      XIN Xing, TIAN Wen-dong, XIAO Yun-han. Influence of different atmospheres on catalystical pyrolysis of biomass[J]. Environ Eng, 2012(S2):473-476.  

    11. [11]

      TRANE R, DAHL S, SKJΦTH-RASMUSSEN M S, JENSEN A D. Catalytic steam reforming of bio-oil[J]. Int J Hydro Energy, 2012,37(8):6447-6472. doi: 10.1016/j.ijhydene.2012.01.023

    12. [12]

      MARTINEZ C, CORMA A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes[J]. Coordin Chem Rev, 2011,255(13):1558-1580.  

    13. [13]

      AL-SABAWI M, CHEN J, NG S. Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: A review[J]. Energy Fuels, 2012,26(9):5355-5372. doi: 10.1021/ef3006417

    14. [14]

      ZHU Xi-Feng, LU Qiang, ZHENG Ji-lu, GUO Qing-xiang, ZHU Qing-shi. Research on biomass pyrolysis and bio-oil characteristics[J]. Acta Energ Sol Sin, 2007,27(12):1285-1289.  

    15. [15]

      WANG Li-hong, BAI Xue-yuan, YI Wei-ming, KONG Fan-xia, LI Yong-jun, HE Fang, LI Zhi-he. Characteristics of bio-oil from plasma heated fluidized bed pyrolysis of corn stalk[J]. Trans CSAE, 2006,22(3):108-111.  

    16. [16]

      HOSOYA T, KAWAMOTO H, SAKA S. Role of methoxyl group in char formation from lignin-related compounds[J]. J Anal Appl Pyrolysis, 2009,84(1):79-83. doi: 10.1016/j.jaap.2008.10.024

    17. [17]

      ASMADI M, KAWAMOTO H, SAKA S. Pyrolysis and secondary reaction mechanisms of softwood and hardwood lignins at the molecular level[J]. Green Energy Technol, 2010,66:129-135.  

    18. [18]

      ZHANG H, RUI X, JIN B, SHEN D, RAN C, XIAO G. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: Effect of different catalysts[J]. Bioresour Technol, 2013,137(6):82-87.  

    19. [19]

      GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, MARTIN O A, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite.Ⅱ. Aldehydes, ketones, and acids[J]. Ind Eng Chem Res, 2004,43(11):2619-2626. doi: 10.1021/ie030792g

    20. [20]

      DICKERSON T, SORIA J. Catalytic fast pyrolysis: A review[J]. Energies, 2013,6(1):514-38. doi: 10.3390/en6010514

    21. [21]

      SAMOLADA M, PAPAFOTICA A, VASALOS I. Catalyst evaluation for catalytic biomass pyrolysis[J]. Energy Fuels, 2000,14(6):1161-1167. doi: 10.1021/ef000026b

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    10. [10]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    13. [13]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    18. [18]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    19. [19]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(1)
  • Abstract views(2734)
  • HTML views(819)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return