Citation: KONG Ting-ting, DONG Yi-fan, ZHANG Ying-ping, ZHANG Ya-gang, ZHOU An-ning. Preparation of hydrotalcite-like Ti/Li/Al-LDHs and its performance in CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 1017-1024. shu

Preparation of hydrotalcite-like Ti/Li/Al-LDHs and its performance in CO2 adsorption

  • Corresponding author: ZHOU An-ning, psu564@139.com
  • Received Date: 7 April 2016
    Revised Date: 18 June 2016

Figures(9)

  • A series of hydrotalcite-like Ti/Li/Al-LDHs materials were prepared by co-precipitation method and characterized by atomic absorption spectrophotometer (AAS), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared (FT-IR); the influence of metal composition and calcination temperature on the structure, morphology and CO2 adsorption capacity of Ti/Li/Al-LDHs was investigated. The results showed that Ti1Li3Al4-LDHs obtained with a Ti/Li/Al ratio of 1:3:4 displays the highest crystallinity and regular morphology, whereas Ti1Li3Al2-LDHs300 prepared with a Ti/Li/Al ratio of 1:3:2 and calcined at 300℃ exhibits the best adsorption performance towards CO2. The CO2 adsorption capacity over Ti1Li3Al2-LDHs300 reaches 53.5mg/g; in addition, the adsorption capacity is only decreased by 2.4% after adsorption for 10 cycles.
  • 加载中
    1. [1]

      IPCC.Special report on renewable energy sources and climate change mitigation[EB/OL].http://www.ipcc.ch/report/srren/,2011.

    2. [2]

      MORIARTY P, HONNERY D. Mitigating greenhouse:Limited time, limited options[J]. Energy Policy, 2008,36(4):1251-1256. doi: 10.1016/j.enpol.2008.01.021

    3. [3]

      BHOWN A S, FREEMAN B C. Analysis and status of post-combustion carbon dioxide capture technologies[J]. Environ Sci Technol, 2011,45(20):8624-8632. doi: 10.1021/es104291d

    4. [4]

      FILHO J F N, LEROUX F, VERNEY V, VALIM J B. Percolated non-Newtonian flow for silicone obtained from exfoliated bioinorganic layered double hydroxide intercalated with amino acid[J]. Appl Clay Sci, 2012,55:88-93. doi: 10.1016/j.clay.2011.10.010

    5. [5]

      IGUCHI S, TERAMURA K, HOSOKAWA S, TANAKA T. Photocatalytic conversion of CO2 in an aqueous solution using variouskinds of layered double hydroxides[J]. Catal Today, 2015,251:140-144. doi: 10.1016/j.cattod.2014.09.005

    6. [6]

      YE L, FIRDAUS A. High temperature adsorption of carbon dioxide on Cu-Al hydrotalcite-derived mixed oxides:kinetics and equilibria by thermogravimetry[J]. J Therm Anal Calorim, 2009,97:885-889. doi: 10.1007/s10973-009-0156-7

    7. [7]

      SAKR A A E, ZAKI T, SABER O, HASSAN S A, ABOUL-GHEIT A K, FARAMAWY S. Synthesis of Zn-Al LDHs intercalated with urea derived anions for capturing carbon dioxide from natural gas[J]. J Taiwan Inst Chem Eng, 2013,44(6):957-962. doi: 10.1016/j.jtice.2013.02.003

    8. [8]

      PATHIK S, SHINSUKE I, KAUZUHIKO Y, KENZO D, SHINOBU O, MASATAKA T, TADASHI S, NⅡ E, RYO S, JAN L, DAISUKE I, JONATHAN P H, KATSUHIKO A, BISHNU P B, YUSUKE Y, NOBUO I. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide[J]. Appl Mater Interfaces, 2014,6(20):18352-18359. doi: 10.1021/am5060405

    9. [9]

      WANG J W, STEVENS L A, DRAGE T C, WOOD J. Preparation and CO2 adsorption of amine modified Mg-Al LDH via exfoliation route[J]. Chem Eng Sci, 2012,68(1):424-431. doi: 10.1016/j.ces.2011.09.052

    10. [10]

      SHAO M F, HAN J B, WEI M, DAVID G, EVANS , XUE D. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chem Eng J, 2011,168(2):519-524. doi: 10.1016/j.cej.2011.01.016

    11. [11]

      HOSNI K, ABDELKARIM O, FRINI-SRASRA N. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides[J]. Korean J Chem Eng, 2015,32(1):104-112. doi: 10.1007/s11814-014-0199-8

    12. [12]

      WANG S L, LIN C H, YAN Y Y, WANG M K. Synthesis of Li/Al LDH using aluminum and LiOH[J]. Appl Clay Sci, 2013,72:191-195. doi: 10.1016/j.clay.2013.02.001

    13. [13]

      HHANG L, WANG J, GAO Y, QIAO Y, ZHENG Q. Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range[J]. J Mater Chem A, 2014,2(43):18454-18462. doi: 10.1039/C4TA04065A

    14. [14]

      AZZOU A, ARUS V A, PLATON N, GHOMARI K, NISTOR I D, SHIAO T C. Polyol-modified layered double hydroxides with attenuated basicity for a truly reversible capture of CO2[J]. Adsorption, 2013,19(5):909-918. doi: 10.1007/s10450-013-9498-3

    15. [15]

      SHAO M, HAN J, WEI M, EVANS D G, DUAN X. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chem Eng J, 2011,168(2):519-524. doi: 10.1016/j.cej.2011.01.016

    16. [16]

      TERUEL L, BOUIZI Y, ATIENZAR P. Hydrotalcities of zinc and titanium as precursors of finely dispersed mixed oxide semiconductors for dye-sensitized solar cells[J]. Energy Environ Sci, 2009,3(1):154-159.

    17. [17]

      SABER O, TAGA H. New layered double hydroxide, Zn-Ti LDH:Preparation and intercalation reactions[J]. J Inclusion Phenom Macrocyclic Chem, 2003,45(1/2):107-115. doi: 10.1023/A:1023078728942

    18. [18]

      KONG Tong-tong, WANG Xia, GUO Qing-jie. Preparation and CO2 adsorption performance of a novel hierarchical micro/mesoporous solid amine sorbent[J]. J Fuel Chem Technol, 2015,43(12):1489-1497.  

    19. [19]

      LIU L J, ZHAO C, XU J, LI Y. Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photocatalyst material[J]. Appl Catal B:Environ, 2015,179:489-499. doi: 10.1016/j.apcatb.2015.06.006

    20. [20]

      CHANG P H, CHANG Y P, CHEN S Y, YU C T CHYOU Y P. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors:Synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011,4(12):1844-1851. doi: 10.1002/cssc.v4.12

    21. [21]

      HU Xue-mei, GU Zheng-ying, LI Xiao-min, GAO Xiang-dong, SHI Ying. Hybrid photoanodes based on nanoporous lithium titanate nanostructures in dye-sensitized solar cells[J]. J Inorg Mater, 2015,30(10):1037-1042. doi: 10.15541/jim20150094

    22. [22]

      DING Xian, YIN Fan-wen, PENG Cheng-dong, ZENG Qing-xin. Hydrothermal synthsis, structural analysis and performance of regular Mn-Zn-Mg-Al-CO3 quaternary layered double hydroxides (LDHs)[J]. Chin J Inorg Chem, 2012,28(2):331-341.

    23. [23]

      XUE X Y, ZHANG S H, ZHANG H M. Structures of LDHs intercalated with ammonia and the thermal stability for ploy (vinyl chloride)[J]. Am J Anal Chem, 2015,6(4):334-341. doi: 10.4236/ajac.2015.64032

    24. [24]

      ZHANG Y, LIU J H, LI Y D, YU M, LI S M, XUE B. A facile approach to superhydrophobic LiAl-layered double hydroxide film on Al-Li alloy substrate[J]. J Coat Technol Res, 2015,12(3):595-601. doi: 10.1007/s11998-015-9660-9

    25. [25]

      LI Bi.Preparation of Mg containing composite oxides and their CO2 adsorption and desorption properties study[D].Taiyuan:Institute of Coal Chemistry, Chinese Academy of Sciences, 2009.

    26. [26]

      YONG Z, RODRIGUES A E. Hydrotalcite-like compounds as adsorbents for carbon dioxide[J]. Energy Convers Manage, 2002,43(14):1865-1876. doi: 10.1016/S0196-8904(01)00125-X

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    8. [8]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    9. [9]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    16. [16]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

Metrics
  • PDF Downloads(4)
  • Abstract views(1674)
  • HTML views(694)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return