Catalytic combustion of methane over Pd/MWCNTs under lean fuel conditions
- Corresponding author: WANG Sheng, wangsheng@dicp.ac.cn WANG Shu-dong, wangsd@dicp.ac.cn
Citation:
GAO Xiu-hui, WANG Sheng, GAO Dian-nan, LIU Wei-gang, CHEN Zhi-ping, WANG Ming-zhe, WANG Shu-dong. Catalytic combustion of methane over Pd/MWCNTs under lean fuel conditions[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(8): 928-936.
LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991,354:56-58. doi: 10.1038/354056a0
PAN X L, BAO X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Acc Chem Res, 2011,44(8):553-562. doi: 10.1021/ar100160t
CHEN W, FAN Z L, PAN X L, BAO X H. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. J Am Chem Soc, 2008,130(29):9414-9419. doi: 10.1021/ja8008192
WEI G F, SHANG C, LIU Z P. Confined platinum nanoparticle in carbon nanotube:Structure and oxidation[J]. Phys Chem Chem Phys, 2015,17(3):2078-2087. doi: 10.1039/C4CP04145C
WANG D, YANG G H, MA Q X, WU M B, TAN Y S, YONEYAMA Y, TSUBAKI N. Confinement effect of carbon nanotubes:Copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate[J]. ACS Catal, 2012,2(9):1958-1966. doi: 10.1021/cs300234e
ZHANG F, PAN X L, HU Y F, YU L, CHEN X Q, JIANG P, ZHANG H B, DENG S B, ZHANG J, BOLIN T B, ZHANG S, HUANG Y Y, BAO X H. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes[J]. Proc Natl Acad Sci U S A, 2013,110(37):14861-14866. doi: 10.1073/pnas.1306784110
XIAO J P, PAN X L, GUO S J, REN P J, BAO X H. Toward fundamentals of confined catalysis in carbon nanotubes[J]. J Am Chem Soc, 2015,137(1):477-482. doi: 10.1021/ja511498s
DATSYUK V, KALYVA M, PAPAGELIS K, PARTHENIOS J, TASIS D, SIOKOU A, KALLITSIS I, GALIOTIS C. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008,46(6):833-840. doi: 10.1016/j.carbon.2008.02.012
LIEW K M, WONG C H, HE X Q, TAN M J. Thermal stability of single and multi-walled carbon nanotubes[J]. Phys Rev B, 2005,71(7)p:075424.
LÓ PEZ M J, CABRIA I, MARCH N H, ALONSO J A. Structural and thermal stability of narrow and short carbon nanotubes and nanostrips[J]. Carbon, 2005,43(7):1371-1377. doi: 10.1016/j.carbon.2005.01.006
LI L, WU G, XU B Q. Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids[J]. Carbon, 2006,44(14):2973-2983. doi: 10.1016/j.carbon.2006.05.027
YU R Q, CHEN L W, LIU Q P, LIN J Y, TAN K L, NG S C, CHAN H S O, XU G Q, HOR T S A. Platinum deposition on carbon nanotubes via chemical modification[J]. Chem Mater, 1998,10(3):718-722. doi: 10.1021/cm970364z
MAZOV I, KUZNETSOV V L, SIMONOVA I A, STADNICHENKO A I, ISHCHENKO A V, ROMANENKO A I, TKACHEV E N, ANIKEEVA O B. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology[J]. Appl Surf Sci, 2012,258(17):6272-6280. doi: 10.1016/j.apsusc.2012.03.021
LIANG X L, DONG X, LIN G D, ZHANG H B. Carbon nanotube-supported Pd-ZnO catalyst for hydrogenation of CO2 to methanol[J]. Appl Catal B:Environ, 2009,88(3/4):315-322.
YANG H X, SONG S Q, RAO R C, WANG X Z, YU Q, ZHANG A M. Enhanced catalytic activity of benzene hydrogenation over nickel confined in carbon nanotubes[J]. J Mol Catal A:Chem, 2010,323(1/2):33-39.
BULUSHEV D A, YURANOV I, SUVOROVA E I, BUFFAT P A, KIWI-MINSKER L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation[J]. J Catal, 2004,224(1):8-17. doi: 10.1016/j.jcat.2004.02.014
DU J P, SONG C, ZHAO J H, ZHU Z P. Effect of chemical treatment to hollow carbon nanoparticles (HCNP) on catalytic behaviors of the platinum catalysts[J]. Appl Surf Sci, 2008,255(5):2989-2993. doi: 10.1016/j.apsusc.2008.08.095
HOFFMANN M, KREFT S, GEORGI G, FULDA G, POHL M M, SEEBURG D, BERGER-KARIN C, KONDRATENKO E V, WOHLRAB S. Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration[J]. Appl Catal B:Environ, 2015,179:313-320. doi: 10.1016/j.apcatb.2015.05.028
FORSTER P, RAMASWAMY V, ARTAXO P, BERNTSEN T, BETTS R.Climate Change 2007:The physical science basis.contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[C].Cambridge, United Kingdom and New York, USA, 2007, 212.
SCHMAL M, SOUZA M M, ALEGRE V V, DA SILVA M A P, CESAR D V, PEREZ C A. Methane oxidation-effect of support, precursor and pretreatment conditions in-situ reaction XPS and DRIFT[J]. Catal Today, 2006,118(3/4):392-401.
VAN VEGTEN N, MACIEJEWSKI M, KRUMEICH F, BAIKER A. Structural properties, redox behaviour and methane combustion activity of differently supported flame-made Pdcatalysts[J]. Appl Catal B:Environ, 2009,93(1/2):38-49.
LEE Y, KIM M Y. Catalytic combustion behaviors of methane and propane over the Pd-based catalyst in the BOP for MCFC power generation systems[J]. J Mech Sci Technol, 2012,26(8):2259-2265. doi: 10.1007/s12206-012-0607-0
ZHOU R X, ZHAO B, YUE B H. Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity[J]. Appl Surf Sci, 2008,254(15):4701-4707. doi: 10.1016/j.apsusc.2008.01.075
LIU Ying, WANG Sheng, GAO Dian-nan, PAN Qiu-shi, WANG Shu-dong. In-situ FTIR study on methane combustion over Pd/NiAl2O4 catalyst[J]. Chin J Catal, 2013,33(9):1552-1557.
DEMOULIN O, NAVEZ M, RUIZ P. Investigation of the behaviour of a Pd/γ-Al2O3 catalyst during methane combustion reaction using in situ DRIFT spectroscopy[J]. Appl Catal A:Gen, 2005,295(1):59-70. doi: 10.1016/j.apcata.2005.08.008
GAO D N, ZHANG C X, WANG S, YUAN Z S, WANG S D. Catalytic activity of Pd/Al2O3 toward the combustion of methane[J]. Catal Commun, 2008,9(15):2583-2587. doi: 10.1016/j.catcom.2008.07.014
YIN F X, JI S F, WU P Y, ZHAO F Z, LI C Y. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane[J]. J Catal, 2008,257(1):108-116. doi: 10.1016/j.jcat.2008.04.010
YANG S W, VALIENTE A M, GONZALEZ M B, RAMOS I R, RUIZ A G. Methane combustion over supported palladium catalysts I.reactivity and active phase[J]. Appl Catal B:Environ, 2000,28:223-233. doi: 10.1016/S0926-3373(00)00178-8
YUE B H, ZHOU R X, WANG Y J, ZHENG X M. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce-Zr/Al2O3catalysts[J]. Appl Catal A:Gen, 2005,295(1):31-39. doi: 10.1016/j.apcata.2005.08.002
SHAO Jian-jun, ZHU Xi, ZHANG Yong-kun, WANG Ming-gui. In situ FT-IR study on CO oxidation over Co3O4/CeO2 catalyst[J]. J Fuel Chem Technol, 2012,40(2):229-234.
MUÑOZ F F, BAKER R T, LEYVA A G, FUENTES R O. Reduction and catalytic behaviour of nanostructured Pd/gadolinia-doped ceria catalysts for methane combustion[J]. Appl Catal B:Environ, 2013,136-137:122-132. doi: 10.1016/j.apcatb.2013.02.008
XU T Y, ZHANG Q F, CEN J, XIANG Y Z, LI X N. Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification:Role of co oxygen species[J]. Appl Surf Sci, 2015,324:634-639. doi: 10.1016/j.apsusc.2014.10.165
CHEN X M, LIN Z J, JIA T T, CAI Z M, HUANG X L, JIANG Y Q, CHEN X, CHEN G N. A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation[J]. Anal Chim Acta, 2009,650(1):54-58. doi: 10.1016/j.aca.2009.02.035
CHEN J H, WANG M Y, LIU B, FAN Z, CUI K Z, KUANG Y F. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation[J]. J Phys Chem B, 2006,110:11775-11779. doi: 10.1021/jp061045a
GUO Y, FHAYLI K, LI S, YANG Y, MASHAT A, KHASHAB N M. Electroless reductions on carbon nanotubes:How critical is the diameter of a nanotube[J]. RSC Adv, 2013,3(39):17693-17695. doi: 10.1039/c3ra42350f
MIKOLAJCZUK A, BORODZINSKI A, STOBINSKI L, KEDZIERZAWSKI P, LESIAK B, KOVER L, TOTH J, LIN H M. Physicochemical characterization of the Pd/MWCNTs catalysts for fuel cell applications[J]. Phys Status Solidi B, 2010,247(11/12):3063-3067.
PERSSON K, PFEFFERLE L D, SCHWARTZ W, ERSSON A, JÄRÅS S G. Stability of palladium-based catalysts during catalytic combustion of methane:The influence of water[J]. Appl Catal B:Environ, 2007,74(3/4):242-250.
CIUPARU D, PERKINS E, PFEFFERLE L. In situ DR-FTIR investigation of surface hydroxyls onγ-Al2O3 supported PdO catalysts during methane combustion[J]. Appl Catal A:Gen, 2004,263(2):145-153. doi: 10.1016/j.apcata.2003.12.006
ASHOKA S, CHITHAIAH P, CHANDRAPPA G T. Studies on the synthesis of CdCO3 nanowires and porous CdO powder[J]. Mater Lett, 2010,64(2):173-176. doi: 10.1016/j.matlet.2009.10.036
GUTIÉRREZ P R, PORTILLO M O, CHÁVEZ M, CHALTEL L, AGUSTÍN S R, RUBIO E, ZAMORA M. Synthesis of CdCO3 in situ doped Pb2+ grown by chemical bath[J]. Mater Lett, 2015,160:488-490. doi: 10.1016/j.matlet.2015.08.034
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
(0.4% CH4, air balance, 330 ℃)
(a), (b), (c): bright field images; (d): selected area electron diffraction pattern