Citation: GAO Xiu-hui, WANG Sheng, GAO Dian-nan, LIU Wei-gang, CHEN Zhi-ping, WANG Ming-zhe, WANG Shu-dong. Catalytic combustion of methane over Pd/MWCNTs under lean fuel conditions[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 928-936. shu

Catalytic combustion of methane over Pd/MWCNTs under lean fuel conditions

Figures(11)

  • The raw multi-walled carbon nanotubes (MWCNTs) were treated with nitric acid. The shift of the surface functional groups on the MWCNTs was observed with XPS. The Pd/MWCNTs catalysts were synthesized by the ultrasonic impregnation method. The total contents of oxygen, hydroxyl and carbonyl groups were measured. The dispersion and size distribution of Pd particles were characterized with TEM. The dependence of Pd dispersion on the oxygen-containing functional groups was validated. The effect of pretreatment on the catalytic activity and stability for methane combustion was investigated under lean fuel conditions. It is shown that the catalytic activity depends on the valence state and particle size of palladium. The transformation from Pd to PdO possibly caused the decrease in the catalytic activity. Another factor inducing deactivation is Pd particle aggregation. The reaction mechanism for methane combustion over the Pd/MWCNTs catalyst is postulated on the basis of the intermediate species detected by in-situ FT-IR spectroscopy.
  • 加载中
    1. [1]

      LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991,354:56-58. doi: 10.1038/354056a0

    2. [2]

      PAN X L, BAO X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Acc Chem Res, 2011,44(8):553-562. doi: 10.1021/ar100160t

    3. [3]

      CHEN W, FAN Z L, PAN X L, BAO X H. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. J Am Chem Soc, 2008,130(29):9414-9419. doi: 10.1021/ja8008192

    4. [4]

      WEI G F, SHANG C, LIU Z P. Confined platinum nanoparticle in carbon nanotube:Structure and oxidation[J]. Phys Chem Chem Phys, 2015,17(3):2078-2087. doi: 10.1039/C4CP04145C

    5. [5]

      WANG D, YANG G H, MA Q X, WU M B, TAN Y S, YONEYAMA Y, TSUBAKI N. Confinement effect of carbon nanotubes:Copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate[J]. ACS Catal, 2012,2(9):1958-1966. doi: 10.1021/cs300234e

    6. [6]

      ZHANG F, PAN X L, HU Y F, YU L, CHEN X Q, JIANG P, ZHANG H B, DENG S B, ZHANG J, BOLIN T B, ZHANG S, HUANG Y Y, BAO X H. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes[J]. Proc Natl Acad Sci U S A, 2013,110(37):14861-14866. doi: 10.1073/pnas.1306784110

    7. [7]

      XIAO J P, PAN X L, GUO S J, REN P J, BAO X H. Toward fundamentals of confined catalysis in carbon nanotubes[J]. J Am Chem Soc, 2015,137(1):477-482. doi: 10.1021/ja511498s

    8. [8]

      DATSYUK V, KALYVA M, PAPAGELIS K, PARTHENIOS J, TASIS D, SIOKOU A, KALLITSIS I, GALIOTIS C. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008,46(6):833-840. doi: 10.1016/j.carbon.2008.02.012

    9. [9]

      LIEW K M, WONG C H, HE X Q, TAN M J. Thermal stability of single and multi-walled carbon nanotubes[J]. Phys Rev B, 2005,71(7)p:075424.

    10. [10]

      LÓ PEZ M J, CABRIA I, MARCH N H, ALONSO J A. Structural and thermal stability of narrow and short carbon nanotubes and nanostrips[J]. Carbon, 2005,43(7):1371-1377. doi: 10.1016/j.carbon.2005.01.006

    11. [11]

      LI L, WU G, XU B Q. Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids[J]. Carbon, 2006,44(14):2973-2983. doi: 10.1016/j.carbon.2006.05.027

    12. [12]

      YU R Q, CHEN L W, LIU Q P, LIN J Y, TAN K L, NG S C, CHAN H S O, XU G Q, HOR T S A. Platinum deposition on carbon nanotubes via chemical modification[J]. Chem Mater, 1998,10(3):718-722. doi: 10.1021/cm970364z

    13. [13]

      MAZOV I, KUZNETSOV V L, SIMONOVA I A, STADNICHENKO A I, ISHCHENKO A V, ROMANENKO A I, TKACHEV E N, ANIKEEVA O B. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology[J]. Appl Surf Sci, 2012,258(17):6272-6280. doi: 10.1016/j.apsusc.2012.03.021

    14. [14]

      LIANG X L, DONG X, LIN G D, ZHANG H B. Carbon nanotube-supported Pd-ZnO catalyst for hydrogenation of CO2 to methanol[J]. Appl Catal B:Environ, 2009,88(3/4):315-322.  

    15. [15]

      YANG H X, SONG S Q, RAO R C, WANG X Z, YU Q, ZHANG A M. Enhanced catalytic activity of benzene hydrogenation over nickel confined in carbon nanotubes[J]. J Mol Catal A:Chem, 2010,323(1/2):33-39.

    16. [16]

      BULUSHEV D A, YURANOV I, SUVOROVA E I, BUFFAT P A, KIWI-MINSKER L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation[J]. J Catal, 2004,224(1):8-17. doi: 10.1016/j.jcat.2004.02.014

    17. [17]

      DU J P, SONG C, ZHAO J H, ZHU Z P. Effect of chemical treatment to hollow carbon nanoparticles (HCNP) on catalytic behaviors of the platinum catalysts[J]. Appl Surf Sci, 2008,255(5):2989-2993. doi: 10.1016/j.apsusc.2008.08.095

    18. [18]

      HOFFMANN M, KREFT S, GEORGI G, FULDA G, POHL M M, SEEBURG D, BERGER-KARIN C, KONDRATENKO E V, WOHLRAB S. Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration[J]. Appl Catal B:Environ, 2015,179:313-320. doi: 10.1016/j.apcatb.2015.05.028

    19. [19]

      FORSTER P, RAMASWAMY V, ARTAXO P, BERNTSEN T, BETTS R.Climate Change 2007:The physical science basis.contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[C].Cambridge, United Kingdom and New York, USA, 2007, 212.

    20. [20]

      SCHMAL M, SOUZA M M, ALEGRE V V, DA SILVA M A P, CESAR D V, PEREZ C A. Methane oxidation-effect of support, precursor and pretreatment conditions in-situ reaction XPS and DRIFT[J]. Catal Today, 2006,118(3/4):392-401.

    21. [21]

      VAN VEGTEN N, MACIEJEWSKI M, KRUMEICH F, BAIKER A. Structural properties, redox behaviour and methane combustion activity of differently supported flame-made Pdcatalysts[J]. Appl Catal B:Environ, 2009,93(1/2):38-49.

    22. [22]

      LEE Y, KIM M Y. Catalytic combustion behaviors of methane and propane over the Pd-based catalyst in the BOP for MCFC power generation systems[J]. J Mech Sci Technol, 2012,26(8):2259-2265. doi: 10.1007/s12206-012-0607-0

    23. [23]

      ZHOU R X, ZHAO B, YUE B H. Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity[J]. Appl Surf Sci, 2008,254(15):4701-4707. doi: 10.1016/j.apsusc.2008.01.075

    24. [24]

      LIU Ying, WANG Sheng, GAO Dian-nan, PAN Qiu-shi, WANG Shu-dong. In-situ FTIR study on methane combustion over Pd/NiAl2O4 catalyst[J]. Chin J Catal, 2013,33(9):1552-1557.

    25. [25]

      DEMOULIN O, NAVEZ M, RUIZ P. Investigation of the behaviour of a Pd/γ-Al2O3 catalyst during methane combustion reaction using in situ DRIFT spectroscopy[J]. Appl Catal A:Gen, 2005,295(1):59-70. doi: 10.1016/j.apcata.2005.08.008

    26. [26]

      GAO D N, ZHANG C X, WANG S, YUAN Z S, WANG S D. Catalytic activity of Pd/Al2O3 toward the combustion of methane[J]. Catal Commun, 2008,9(15):2583-2587. doi: 10.1016/j.catcom.2008.07.014

    27. [27]

      YIN F X, JI S F, WU P Y, ZHAO F Z, LI C Y. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane[J]. J Catal, 2008,257(1):108-116. doi: 10.1016/j.jcat.2008.04.010

    28. [28]

      YANG S W, VALIENTE A M, GONZALEZ M B, RAMOS I R, RUIZ A G. Methane combustion over supported palladium catalysts I.reactivity and active phase[J]. Appl Catal B:Environ, 2000,28:223-233. doi: 10.1016/S0926-3373(00)00178-8

    29. [29]

      YUE B H, ZHOU R X, WANG Y J, ZHENG X M. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce-Zr/Al2O3catalysts[J]. Appl Catal A:Gen, 2005,295(1):31-39. doi: 10.1016/j.apcata.2005.08.002

    30. [30]

      SHAO Jian-jun, ZHU Xi, ZHANG Yong-kun, WANG Ming-gui. In situ FT-IR study on CO oxidation over Co3O4/CeO2 catalyst[J]. J Fuel Chem Technol, 2012,40(2):229-234.  

    31. [31]

      MUÑOZ F F, BAKER R T, LEYVA A G, FUENTES R O. Reduction and catalytic behaviour of nanostructured Pd/gadolinia-doped ceria catalysts for methane combustion[J]. Appl Catal B:Environ, 2013,136-137:122-132. doi: 10.1016/j.apcatb.2013.02.008

    32. [32]

      XU T Y, ZHANG Q F, CEN J, XIANG Y Z, LI X N. Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification:Role of co oxygen species[J]. Appl Surf Sci, 2015,324:634-639. doi: 10.1016/j.apsusc.2014.10.165

    33. [33]

      CHEN X M, LIN Z J, JIA T T, CAI Z M, HUANG X L, JIANG Y Q, CHEN X, CHEN G N. A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation[J]. Anal Chim Acta, 2009,650(1):54-58. doi: 10.1016/j.aca.2009.02.035

    34. [34]

      CHEN J H, WANG M Y, LIU B, FAN Z, CUI K Z, KUANG Y F. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation[J]. J Phys Chem B, 2006,110:11775-11779. doi: 10.1021/jp061045a

    35. [35]

      GUO Y, FHAYLI K, LI S, YANG Y, MASHAT A, KHASHAB N M. Electroless reductions on carbon nanotubes:How critical is the diameter of a nanotube[J]. RSC Adv, 2013,3(39):17693-17695. doi: 10.1039/c3ra42350f

    36. [36]

      MIKOLAJCZUK A, BORODZINSKI A, STOBINSKI L, KEDZIERZAWSKI P, LESIAK B, KOVER L, TOTH J, LIN H M. Physicochemical characterization of the Pd/MWCNTs catalysts for fuel cell applications[J]. Phys Status Solidi B, 2010,247(11/12):3063-3067.

    37. [37]

      PERSSON K, PFEFFERLE L D, SCHWARTZ W, ERSSON A, JÄRÅS S G. Stability of palladium-based catalysts during catalytic combustion of methane:The influence of water[J]. Appl Catal B:Environ, 2007,74(3/4):242-250.

    38. [38]

      CIUPARU D, PERKINS E, PFEFFERLE L. In situ DR-FTIR investigation of surface hydroxyls onγ-Al2O3 supported PdO catalysts during methane combustion[J]. Appl Catal A:Gen, 2004,263(2):145-153. doi: 10.1016/j.apcata.2003.12.006

    39. [39]

      ASHOKA S, CHITHAIAH P, CHANDRAPPA G T. Studies on the synthesis of CdCO3 nanowires and porous CdO powder[J]. Mater Lett, 2010,64(2):173-176. doi: 10.1016/j.matlet.2009.10.036

    40. [40]

      GUTIÉRREZ P R, PORTILLO M O, CHÁVEZ M, CHALTEL L, AGUSTÍN S R, RUBIO E, ZAMORA M. Synthesis of CdCO3 in situ doped Pb2+ grown by chemical bath[J]. Mater Lett, 2015,160:488-490. doi: 10.1016/j.matlet.2015.08.034

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(2)
  • Abstract views(2278)
  • HTML views(862)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return