Citation: Liu Guangli, Shen Wenrui, Wang Jingzhen, Yang Jing, Yang Qinzheng, Zhao Huazhang. Progress in Biomimetic Water Channels of Selective Transport[J]. Chemistry, ;2020, 83(8): 704-710. shu

Progress in Biomimetic Water Channels of Selective Transport

  • Corresponding author: Yang Qinzheng, yangqinzheng@sina.com
  • Received Date: 9 January 2020
    Accepted Date: 28 May 2020

Figures(4)

  • Aquaporins (AQPs) are transmembrane proteins with high selectivity and permeability to water molecules. Biomimetic water channel is self-assembled from various inorganic or organic materials, such as carbon nanomaterial, organic compounds and peptides, aiming to mimic natural aquaporins. In this paper, the structure of AQPs and specific water permeability functions are described. On this basis, the research progress in biomimetic water channel based on carbon nanomaterial, organic and peptide pore are reviewed. This review focus on the material properties of three kinds of biomimetic water channel and their effects on the structure and function of biomimetic water channel. Finally, in view of the shortcomings of the existing biomimetic water channel, the challenge and prospect of developing novel biomimetic water channel are proposed.
  • 加载中
    1. [1]

      Noda Y, Sohara E, Ohta E, et al. Nat. Rev. Nephrol., 2010, 6(3):168-178. 

    2. [2]

      Agre P, King L S, Yasui M, et al. J. Physiol., 2002, 542(1):3-16. 

    3. [3]

      de Groot B L. Science, 2001, 294(5550):2353-2357. 

    4. [4]

      Murata K, Mitsuoka K, Hirai T, et al. Nature, 2000, 407(6804):599-605. 

    5. [5]

    6. [6]

      Li X, Chou S, Wang R, et al. J. Membr. Sci., 2015, 494:68-77. 

    7. [7]

      Zhao Y, Vararattanavech A, Li X, et al. Environ. Sci. Technol., 2013, 47(3):1496-1503.

    8. [8]

      Xie W, He F, Wang B, et al. J. Mater. Chem. A, 2013, 1(26):7592-7600. 

    9. [9]

    10. [10]

      Giwa A, Hasan S W, Yousuf A, et al. Desalination, 2017, 420:403-424. 

    11. [11]

    12. [12]

      Barboiu M, Gilles A. Acc. Chem. Res., 2013, 46(12):2814-2823. 

    13. [13]

      Eriksson U K, Fischer G, Friemann R, et al. Science, 2013, 340(6138):1346-1349. 

    14. [14]

      Tajkhorshid E. Science, 2002, 296(5567):525-530. 

    15. [15]

      Oliva R, Calamita G, Thornton J M, et al. PNAS, 2010, 107(9):4135-4140. 

    16. [16]

      Yasui M. J. Pharmacol. Sci., 2004, 96(3):260-263. 

    17. [17]

      Gonen T, Sliz P, Kistler J, et al. Nature, 2004, 429(6988):193-197. 

    18. [18]

      Hub J S, de Groot B L. PNAS, 2008, 105(4):1198-1203. 

    19. [19]

      King L S, Kozono D, Agre P. Nat. Rev. Mol. Cell Biol., 2004, 5(9):687-698. 

    20. [20]

      Engel A, Fujiyoshi Y, Agre P. EMBO J., 2000, 19(5):800-806. 

    21. [21]

      Ren G, Cheng A, Melnyk P, et al. J. Struct. Biol., 2000, 130(1):45-53. 

    22. [22]

      Huelsenbeck J P. Science, 2001, 294(5550):2310-2314. 

    23. [23]

      de Groot B L, Engel A, Grubmüller H. J. Mol. Biol., 2003, 325(3):485-493. 

    24. [24]

      Li H, Chen H, Steinbronn C, et al. J. Mol. Biol., 2011, 407(4):607-620. 

    25. [25]

      Padhi S, Priyakumar U D. Biochim. Biophys. Acta-Biomembr., 2017, 1859(1):10-16. 

    26. [26]

      Savage D F, O'Connell J D, Miercke L J W, et al. PNAS, 2010, 107(40):17164-17169. 

    27. [27]

      Sui H, Han B G, Lee J K, et al. Nature, 2001, 414(6866):872-878. 

    28. [28]

      Kitchen P, Conner A C. Biochemistry, 2015, 54(45):6753-6755. 

    29. [29]

      Gonen T, Walz T. Quart. Rev. Biophys., 2006, 39(4):361-396. 

    30. [30]

      de Groot B L, Frigato T, Helms V, et al. J. Mol. Biol., 2003, 333(2):279-293. 

    31. [31]

      Iijima S. Nature, 1991, 354(6348):56-58. 

    32. [32]

      Hoenlein W, Kreupl F, Duesberg G S, et al. IEEE Trans. Compon. Pack. Technol., 2004, 27(4):629-634. 

    33. [33]

      Hummer G, Rasaiah J C, Noworyta J P. Nature, 2001, 414(6860):188-190. 

    34. [34]

      Tunuguntla R H, Henley R Y, Yao Y C, et al. Science, 2017, 357(6353):792-796. 

    35. [35]

      Majumder M, Chopra N, Hinds B J. J. Am. Chem. Soc., 2005, 127(25):9062-9070. 

    36. [36]

      Yi G, Chen S, Quan X, et al. Sep. Purif. Technol., 2018, 197:107-115. 

    37. [37]

      Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696):666-669. 

    38. [38]

      Upadhyay R K, Soin N, Roy S S. RSC Adv., 2014, 4(8):3823-3851. 

    39. [39]

      Tabish T A, Memon F A, Gomez D E, et al. Sci. Rep., 2018, 8(1):1-14. 

    40. [40]

      Mi B, Zheng S, Tu Q, et al. Faraday Discuss., 2018, 209:329-340. 

    41. [41]

      Furukawa H, Cordova K E, O'Keeffe M, et al. Science, 2013, 341:1230444. 

    42. [42]

      Lu W G, Wei Z W, Gu Z Y, et al. Chem. Soc. Rev., 2014, 43:5561-5593. 

    43. [43]

      Ma D, Peh S B, Han G, et al. ACS Appl. Mater. Interf., 2017, 9(8):7523-7534. 

    44. [44]

      Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1(10):1-19.

    45. [45]

      Liu G, Jiang Z, Yang H, et al. J. Membr. Sci., 2019, 572:557-566. 

    46. [46]

      Lee C S, Choi M, Hwang Y Y, Adv. Mater., 2018, 30(14):1705944.

    47. [47]

      Fei Z, Zhao D, Geldbach T J, et al. Angew. Chem. Int. Ed., 2005, 44(35):5720-5725. 

    48. [48]

      Licsandru E, Kocsis I, Shen Y, et al. J. Am. Chem. Soc., 2016, 138(16):5403-5409. 

    49. [49]

      Le Duc Y, Michau M, Gilles A, et al. Angew. Chem. Int. Ed., 2011, 50:11366-11372. 

    50. [50]

      Zhou X, Liu G, Yamato K, et al. Nat. Commun., 2012, 3(48):949.

    51. [51]

      Madhavan N, Robert E C, Gin M S. Angew. Chem. Int. Ed., 2005, 44(46):7584-7587. 

    52. [52]

      Tanaka Y, Kobuke Y, Sokabe M. Angew. Chem. Int. Ed., 1995, 34(6):693-694. 

    53. [53]

      Sidorov V, Kotch F W, Abdrakhmanova G, et al. J. Am. Chem. Soc., 2002, 124(10):2267-2278. 

    54. [54]

      Negin S, Daschbach M M, Kulikov O V, et al. J. Am. Chem. Soc., 2011, 133(10):3234-3237. 

    55. [55]

      Kim K, Selvapalam N, Ko Y H, et al. Chem. Soc. Rev., 2007, 36(2):267-279. 

    56. [56]

      Shen Y X, Saboe P O, Sines I T, et al. J. Membr. Sci., 2014, 454:359-381. 

    57. [57]

      Satake A, Yamamura M, Oda M, et al. J. Am. Chem. Soc., 2008, 130(20):6314-6315. 

    58. [58]

      Montenegro J, Ghadiri M R, Granja J R, et al. Acc. Chem. Res., 2013, 46(12):2955-2965. 

    59. [59]

      Percec V, Dulcey A E, Balagurusamy V S K, et al. Nature, 2004, 430(7001):764. 

    60. [60]

      Kaucher M S, Peterca M, Dulcey A E, et al. J. Am. Chem. Soc., 2007, 129(38):11698-11699. 

    61. [61]

      Hourani R, Zhang C, Van Der Weegen R, et al. J. Am. Chem. Soc., 2011, 133(39):15296-15299. 

    62. [62]

      Shen Y, Si W, Erbakan M, et al. PNAS, 2015, 112(32):9810-9815. 

    63. [63]

      Song W, Joshi H, Chowdhury R, et al. Nat. Nanotechnol., 2019, 15:73-79.

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    9. [9]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    10. [10]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    13. [13]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    14. [14]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    15. [15]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    20. [20]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

Metrics
  • PDF Downloads(19)
  • Abstract views(1166)
  • HTML views(417)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return