Citation: YANG Zhi-rong, MENG Qing-yan, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Interaction between Shenmu coal and different caking coals during co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 641-648. shu

Interaction between Shenmu coal and different caking coals during co-pyrolysis

  • Corresponding author: HUANG Jie-jie, huangjj@sxicc.ac.cn
  • Received Date: 12 March 2018
    Revised Date: 9 May 2018

    Fund Project: The project was supported by the National Key Research and Development Program (2016YFB 0600401-01)the National Key Research and Development Program 2016YFB 0600401-01

Figures(7)

  • The pyrolysis characteristic of blended coal and the interaction between Shenmu coal (SMC) and caking coals(Fat coal-FM, gas coal-QM, coking coal-JM) were studied by temperature-programmed thermobalance. The pyrolysis kinetics were analyzed using distributed activation energy model (DAEM). The results indicate that the concentrated release rate of moisture increases and temperature corresponding to the release peak of volatile matter(tmax) for coal blends decreases as increasing SMC blending ratio. The inhibition of blended coal is reduced as increasing SMC blending ratio when pyrolysis temperature surpasses the solidified temperature of metaplast (>460-480 ℃), indicating a poor bonding behavior of metaplast. In addition, the inhibition of blended coal is enhanced and its bonding behavior is improved with increasing heating rate. The effects of relieving swelling pressure and improving dispersity of metaplast gradually reduce as deepening the metamorphic degree of caking coal from QM, FM to JM, since the corresponding temperature for promoting interaction (release of volatile) is below, within, above the plastic temperature range of caking coals, respectively. A comparison of experimental and calculated distributed activation energy model confirms the interaction mechanism of blended coal during co-pyrolysis.
  • 加载中
    1. [1]

      LI Ying. The present situation and development proposal of coking industry in China[D]. Beijing: University of International Business and Economics, 2006.

    2. [2]

      SHEN Da-yong. Suggestions and status of Xuzhou coking industry[J]. China Resour Compr Util, 2016,34(5):46-48.  

    3. [3]

      YE C, WANG Q H, LUO Z Y, XIE G L, JIN K, SIYIL M, CEN K F. Characteristics of coal partial gasification on a circulating fluidized bed reactor[J]. Energy Fuels, 2017,31:2557-2564. doi: 10.1021/acs.energyfuels.6b02889

    4. [4]

      MENG Qing-yan, YANG Zhi-rong, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Caking property of Shenmu coal and caking coal blending coals for coke-making[J]. Coal Convers, 2017,40(5):45-49.  

    5. [5]

      BAI Xiao-yan, PEI Xian-feng, WANG Yan. Technology and economic analysis on coking enterprise transformation to produce coke for gasification[J]. Coal Qual Technol, 2016,S1:16-19.  

    6. [6]

      XU Xiu-li. Technical and economical discussion about gasified coke production and gas making by coke particle[J]. Coal Process Compr Util, 2016,6:37-40.  

    7. [7]

      YANG Z R, MENG Q Y, HUANG J J, WANG Z Q, LI C Y, FANG Y T. A particle-size regulated approach to producing high strength gasification-coke by blending a larger proportion of long flame coal[J]. Fuel Process Technol, 2018,177:101-108. doi: 10.1016/j.fuproc.2018.04.024

    8. [8]

      DUFFY J, MAHONEY M, STEEL M. Influence of coal thermoplastic properties on coking pressure generation:Part 1- A study of binary coal blends and specific additives[J]. Fuel, 2010,89:1590-1599. doi: 10.1016/j.fuel.2009.08.031

    9. [9]

      CASCAL M, DIAZ-FAES E, ALVAREZ R. Influence of the permeability of the coal plastic layer on coking pressure[J]. Fuel, 2006,85:281-288. doi: 10.1016/j.fuel.2005.06.009

    10. [10]

      NYATHI M S, MASTALERZ M, KRUSE R. Influence of coke particle size on pore structural determination by optical microscopy[J]. Int J Coal Geol, 2013,118:8-14. doi: 10.1016/j.coal.2013.08.004

    11. [11]

      WU Z Q, WANG S Z, ZHAO J, CHEN L, MENG H Y. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal[J]. Bioresource Technol, 2014,169:220-228. doi: 10.1016/j.biortech.2014.06.105

    12. [12]

      MIURA K, MAKI T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy Fuels, 1998,12(5):864-869. doi: 10.1021/ef970212q

    13. [13]

      VAND V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proc Phys Soc, 1942,55(3):222-246.

    14. [14]

      PITT G J. The kinetics of the evolution of volatile products from coal[J]. Fuel, 1962,41(3):267-274.  

    15. [15]

      CHEN S J, YANG Z, CHEN L, TAO X X, TANG L F, HE H. Wetting thermodynamics of low-rank coal and attachment in flotation[J]. Fuel, 2017,207:214-225. doi: 10.1016/j.fuel.2017.06.018

    16. [16]

      YAO Na. Experimental study on the behavior of biomass fast pyrolysis[D]. Harbin: Harbin Institute of Technology, 2008.

    17. [17]

      WANG Lin-jun, MA Yang, LIU Jia-xun, JIANG Xiu-min. Study of superfine pulverized coal pyrolysis and thermodynamic parameters[J]. Boiler Technol, 2015,46(6):73-78.  

    18. [18]

      XUE Wei. Biomass pyrolysis with lignite thermogravimetric experiment research and dynamic analysis[D]. Kunming: Kunming University of Science and Technology, 2013.

  • 加载中
    1. [1]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    4. [4]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    8. [8]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    9. [9]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    12. [12]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    13. [13]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    16. [16]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(2)
  • Abstract views(2075)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return