Citation: GUAN Gui-qing, ZOU Ming-zhong, FENG Qian, LIN Jian-ping, HUANG Zhi-gao, YAN Gui-yang. Synthesis of Fe3O4/RGO composites and their electrochemical performance[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 362-369. shu

Synthesis of Fe3O4/RGO composites and their electrochemical performance

  • Corresponding author: GUAN Gui-qing, 782876177@qq.com YAN Gui-yang, ygyfjnu@163.com
  • Received Date: 28 November 2016
    Revised Date: 25 January 2017

    Fund Project: the Research Project of Science and Technology of Ningde City 20140218the Special Project for Fujian Provincial Universities JK2014055the Research Project of Science and Technology of Ningde City 20150169the National Natural Science Foundation of China 21473096the National Natural Science Foundation of China 21603112

Figures(9)

  • With reduced graphene oxide (RGO) as the precursor, Fe3O4/RGO composites were synthesized via a hydrothermal method combined with annealing treatment; the crystalline phase, microstructure and component of Fe3O4/RGO composites were characterized by XRD, SEM, TEM and Raman spectra. As a new type of lithium battery electrode materials, their electrochemical performance and the corresponding performance enhanced mechanism were investigated by the CV and EIS tests. The results indicate that high loading Fe3O4/RGO anodes after charge-discharge 60 cycles show high reversible capacities of 709 mAh/g at 200 mA/g and 479 mAh/g at 600 mA/g, with a very good rate performance. Compared with the Fe3O4 electrodes, Fe3O4/RGO electrodes exhibit better electrochemical performance, which is associated with a synergy between the stable RGO matrix and its good conductivity; such a nano-sized configuration may not only facilitate the electron conduction but also help to maintain the structural integrity of active materials.
  • 加载中
    1. [1]

      POIZOT P, LARUELLE S, GRUGEON S, DUPON L, TARASCON J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000,407(6803):496-499. doi: 10.1038/35035045

    2. [2]

      TABERNA P L, MITRA S, POIZOT P, SIMON P, TARASCON J M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nat Mater, 2006,5(7):567-573. doi: 10.1038/nmat1672

    3. [3]

      LIU H, WANG G X, WANG J Z, WEXLER D. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries[J]. Electrochem Comm, 2008,10(12):1879-1882. doi: 10.1016/j.elecom.2008.09.036

    4. [4]

      ZHANG W M, WU X L, HU J S, GUO Y G, WAN L J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J]. Adv Funct Mater, 2008,18(24):3941-3946. doi: 10.1002/adfm.v18:24

    5. [5]

      CHEN J, XU L N, LI W Y, GOU X L. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Adv Mater, 2005,17(17):582-586.

    6. [6]

      REDDY M V, YU T, SOW C H, SHEN Z X, LIM CT, RAO S G V, CHOWDARI B V R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries[J]. Adv Funct Mater, 2007,17(15):2792-2799. doi: 10.1002/(ISSN)1616-3028

    7. [7]

      LARCHER D, MASQUELIER C, BONNIN D, CHABRE Y, MASSON V, LERICHE J B, TARASCON J M. Effect of particle size on lithium intercalation into α Fe2O3[J]. J Electrochem Soc, 2003,150(1):A133-A139. doi: 10.1149/1.1528941

    8. [8]

      WU Y, WEI Y, WANG J P, JIANG K L, FAN S S. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high performance anodes for lithium ion batteries[J]. Nano Lett, 2013,13(2):818-823. doi: 10.1021/nl3046409

    9. [9]

      KANG E, JUNG Y S, CAVANAGH A S, KIM G H, GEORGE S M, DILLON A C, KIM J K, LEE J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries[J]. Adv Funct Mater, 2011,21(13):2430-2438. doi: 10.1002/adfm.201002576

    10. [10]

      BAN C M, WU Z C, GILLASPIE D T, CHEN LE, YAN Y F, BLACKBURN J L, DILLON A C. Nanostructured Fe3O4/SWNT electrode:Binder free and high-rate Li-ion anode[J]. Adv Mater, 2010,22(20):E145-E149. doi: 10.1002/adma.200903650

    11. [11]

      NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, KATSNELSON M I, GRIGORIEVA I V, DUBONOS S V, FIRSOV A A. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005,438(7065):197-200. doi: 10.1038/nature04233

    12. [12]

      ANNALISA F, LOS J H, KATSNELSON MIKHAIL I. Intrinsic ripples in graphene[J]. Nat Mater, 2007,6(11):858-861. doi: 10.1038/nmat2011

    13. [13]

      YANG S B, FENG X L, WANG L, TANG K, MAIER J, MLLEN K. Graphene-based nanosheets with a sandwich structure[J]. Angew Chem Int Ed, 2010,49(28):4795-4799. doi: 10.1002/anie.201001634

    14. [14]

      YOO E J, KIM J, HOSONO E, ZHOU H S, KUDO T, HONMA I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithiumion batteries[J]. Nano Lett, 2008,8(8):2277-2279. doi: 10.1021/nl800957b

    15. [15]

      ZHOU G M, WANG D W, LI F, ZHANG L L, LI N, WU Z S, WEN L, LU G Q (MAX), CHENG H M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chem Mater, 2010,22(18):5306-5313. doi: 10.1021/cm101532x

    16. [16]

      FU C J, ZHAO G G, ZHANG H J, LI S. A Facile route to controllable synthesis of Fe3O4/graphene composites and their application in lithium-ion batteries[J]. Int Electrochem Sci, 2014,9(1):46-60.

    17. [17]

      SUBRAMANI B, PARAKANDY M P, SRINIVASAN A, DINESH R, RAGHAVAN G, TATA N R. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries[J]. Chem Phys, 2014,16(11):5284-5294.

    18. [18]

      LI J, ZOU M Z, WEN W W, ZHAO Y, LIN Y B, CHEN L Z, LAI H, GUAN L H, HUANG Z G. Spinel MFe2O4 (M=Co, Ni) nanoparticles coated on multi-walled carbon nanotubes as electrocatalysts for Li-O2 batteries[J]. J Mater Chem A, 2014,2(26):10257-10262. doi: 10.1039/c4ta00960f

    19. [19]

      ZHAO Y, LI J X, DING Y H, GUAN L H. Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+[J]. J Mater Chem, 2011,21(21):19101-19105.

    20. [20]

      ZHAO Y, LI J X, WU C X, GUAN L H. A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials[J]. Nanoscale Res Lett, 2011,6:71-75.  

    21. [21]

      SHEBANOVA O N, PETER L. Raman study of agnetite (Fe3O4):Laser-induced thermal effects and oxidation[J]. J Raman Spectrosc, 2003,34:845-852. doi: 10.1002/(ISSN)1097-4555

    22. [22]

      AMODINI M, TANUJA M. Analysis of surface potential and magnetic properties of Fe3O4/graphene oxide nanocomposites[C]. AIP Conference Proceedings, 2016, 1731(1):050010.

    23. [23]

      FU C J, ZHAO G G, ZHANG H J, LI S. Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries[J]. Int J Electrochem Sci, 2013,8(5):6269-6280.  

    24. [24]

      LI J X, ZOU M Z, ZHAO YI, LIN Y B, LAI H, GUAN L H, HUANG Z G. Coaxial MWNTs@MnO2 confined in conducting PPy for kinetically efficient and long-term lithium ion storage[J]. Electrochim Acta, 2013,111(6):165-171.

    25. [25]

      ZOU M Z, WEN W W, LI J X, LIN Y B, LAI H, HUANG Z G. Nano-crystalline FeOOH mixed with SWNT matrix as a superior anode material for lithium batteries[J]. J Energy Chem, 2014,23(4):513-518. doi: 10.1016/S2095-4956(14)60179-0

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(4)
  • Abstract views(1261)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return