Citation: ZHANG Tie-jun, LI Jian, HE Hong, LIANG Wen-jun, LIANG Quan-ming. Effect of antimony doped vanadium-titanium catalyst on low-temperature NH3-SCR activity[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 740-746. shu

Effect of antimony doped vanadium-titanium catalyst on low-temperature NH3-SCR activity

  • Corresponding author: LI Jian, ljian@bjut.edu.cn
  • Received Date: 21 February 2017
    Revised Date: 19 April 2017

Figures(10)

  • Sb-V2O5-TiO2 catalysts were prepared by wet impregnation method. The effect of antimony loadings and calcination temperatures on the activity of catalysts were investigated on the basis of 3%V2O5-TiO2. The results indicate that the catalyst with 11% Sb loading, calcined at 500℃, has the best activity of SCR. The NOx conversion could reach 92% at 170℃ with the inlet NOx concentration of 0.07%, the O2 volume fraction of 5%, and the space velocity of 27 000 h-1. The H2-TPR data reveal that the increase of activity can be attributed to the promotion of the catalyst oxidation ability by the modifying of antimony. Sb is mainly in the pentavalent antimony form on the surface of the catalyst, and the increase in surface acidity of the catalyst is identified by means of XPS and NH3-TPD. The effects of SO2 and H2O on the catalyst is also studied, showing that the Sb-V2O5-TiO2 has an excellent catalytic activity in the presence of H2O and SO2. FT-IR, TG and pore structure test results suggest that the addition of Sb can effectively inhibit the aggregation of ammonium sulfate on the catalyst surface, thereby improving the service life of the catalyst.
  • 加载中
    1. [1]

      FORZATTI P. Present status and perspectives in deNOxSCR catalysis[J]. Appl Catal A:Gen, 2001,222(1/2):221-236.  

    2. [2]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.  

    3. [3]

      PARVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998,46(4):233-316. doi: 10.1016/S0920-5861(98)00399-X

    4. [4]

      PUTLURU S S R, SCHILL L, JENSEN A D, SIRET B, TABARIES F, FEHRMANN R. Mn/TiO2 and Mn-Fe/TiO2 catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B:Environ, 2015,165:628-635. doi: 10.1016/j.apcatb.2014.10.060

    5. [5]

      THIRUPATHI B, SMIRNIOTIS P G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures[J]. Appl Catal B:Environ, 2011,110:195-206. doi: 10.1016/j.apcatb.2011.09.001

    6. [6]

      TANG X F, LI J H., SUN L, HAO J M. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3[J]. Appl Catal B:Environ, 2010,99(1/2):156-162.  

    7. [7]

      CHEN Z H, YANG Q, LI H, LI X H, WANG L F, TSANG S C. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3at low temperature[J]. J Catal, 2010,276(1):56-65. doi: 10.1016/j.jcat.2010.08.016

    8. [8]

      JIN R B, LIU Y, WU Z B, WANG H Q, GU T T. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst[J]. Catal Today, 2010,153(3/4):84-89.  

    9. [9]

      HUANG Zeng-bin, LI Cui-qing, WANG Zhen, XU Sheng-mei, FENG Ling-bo, WANG Hong, SONG Yong-ji, ZHANG Wei. Performance of Mn-Ce catalysts supported on different zeolites in the NH3-SCR of NOx[J]. J Fuel Chem Technol, 2016,44(11):1388-1393. doi: 10.3969/j.issn.0253-2409.2016.11.016

    10. [10]

      YE Fei, LIU Rong, GONG Xiang-jun, GUAN Hao. Effects of ZrO2 crystallite phases on MnOx-CeO2 SCR DeNOx catalysts[J]. Res Environ Sci-China, 2015,28(11):1720-1727.  

    11. [11]

      QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3at low temperatures[J]. Appl Catal B:Environ, 2004,51(2):93-106. doi: 10.1016/j.apcatb.2004.01.023

    12. [12]

      PHIL H H, REDDY M P, KUMAR P A, JU K L, HYO J S. SO2resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Appl Catal B:Environ, 2008,78(3/4):301-308.  

    13. [13]

      CAO Zheng, HUANG Yan, PENG Li-li, LI Jian-guang. Selective catalytic reduction of NO with ammonia over V2O5-Sb2O3-TiO2 at low temperature and resistance to H2O and SO2 poisoning[J]. J Fuel Chem Technol, 2012,40(4):456-462.  

    14. [14]

      XU T F, WU X D, GAO Y X, LIN Q W, HU J F, WENG D. Comparative study on sulfur poisoning of V2O5-Sb2O3/TiO2 and V2O5-WO3/TiO2 monolithic catalysts for low-temperature NH3-SCR[J]. Catal Commun, 2017,93:33-36. doi: 10.1016/j.catcom.2017.01.021

    15. [15]

      BESSELMANN S, FREITAG C, HINRICHSEN O, MUHLER M. Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts[J]. Phys Chem Chem Phys, 2001,3(21):4633-4638. doi: 10.1039/b105466j

    16. [16]

      DANH H T, KUMAR P A, JESONG Y E, HA H P. Enhanced NH3-SCR activity of Sb-V/CeO2-TiO2 catalyst at low temperatures by synthesis modification[J]. Res Chem Intermed, 2016,42(1):155-169. doi: 10.1007/s11164-015-2329-2

    17. [17]

      XU C, LIU J, ZHAO Z, YU F, CHENG K, WEI Y C, DUAN A J, JIANG G Y. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb[J]. J Environ Sci China, 2015,31:74-80. doi: 10.1016/j.jes.2014.09.040

    18. [18]

      YANG Rui, HUANG Hai-feng, CHEN Yi-jie, ZHANG Xi-xiong, LU Han-feng. Performance of Cr-doped vanadia/titania catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Chin J Catal, 2015,36(8):1256-1262.  

    19. [19]

      AMIRIDIS M D, WACHS I E, DEO G, JEHNG J M, KIM D S. Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3:Influence of vanadia loading, H2O, and SO2[J]. J Catal, 1996,161:247-257. doi: 10.1006/jcat.1996.0182

    20. [20]

      WAGNER C D, RIGGERS W M, DAVIS L E, MOULDER J F, MUILENBERG G E. Handbook of X-ray Photoelectron Spectroscopy[M].Minnesota:In Perkin-Elmer Corporation, 1979.

    21. [21]

      MONTILLA F, MORALLON E, DE BATTISTI A, BARISON S, DAOLIO S, VAZQUEZ J L. Preparation and characterization of antimony-doped tin dioxide electrodes.3.XPS and SIMS characterization[J]. J Phys Chem B, 2004,108(41):15976-15981. doi: 10.1021/jp048674+

    22. [22]

      DU X S, GAO X, FU Y C, GAO F, LUO Z Y, CEN K F. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst[J]. J Colloid Interf Sci, 2012,368:406-412. doi: 10.1016/j.jcis.2011.11.026

    23. [23]

      NOVA I, LIETTI L, ACQUA L D, GIAMELLO E, FORZATTI P. Study of thermal deactivation of a de-NOx commercial catalyst[J]. Appl Catal B:Environ, 2001,35(1):31-42. doi: 10.1016/S0926-3373(01)00229-6

    24. [24]

      SHEN Yue-song, ZHU Du-min, QIU Tai, SHEN Shu-bao. Preparation of Ti-Zr-V-O catalytic composite material and its selective catalytic reduction of NO[J]. J Inorg Mater, 2009,24(3):458-462.  

    25. [25]

      WAQIF M, PIEPLU A, SAUR O, LAVALLEY JC, BLANCHARD G. Use of CeO2-Al2O3 as a SO2 sorbent[J]. Solid State Ionics, 1997,95(1/2):163-167.  

    26. [26]

      LI L D, SHEN Q, CHENG J, HAO Z P. Catalytic oxidation of NO over TiO2 supported platinum clusters. Ⅱ:Mechanism study by in situ FTIR spectra[J]. Catal Today, 2010,158(3/4):361-369.  

    27. [27]

      FAN Yun-zhu, CAO Fa-hai. Thermal decomposition kinetics of ammonium sulfate[J]. J Chem Eng Chin Univ, 2011,25(2):342-346.  

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    4. [4]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    5. [5]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    12. [12]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    15. [15]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    16. [16]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    19. [19]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    20. [20]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

Metrics
  • PDF Downloads(3)
  • Abstract views(1310)
  • HTML views(663)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return