Citation: WU Xiao-min, NI Kai-wen, YU Xiao-long, ZHAO Ning. in-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 179-188. shu

in-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR

  • Corresponding author: WU Xiao-min, wuxiaomin@hqu.edu.cn
  • Received Date: 24 October 2019
    Revised Date: 28 January 2020

    Fund Project: the Xiamen Science and Technology Program Funds 3502Z20183025the Scientific Research Funds of Huaqiao University 605-50Y17071The project was supported by the National Key Research and Development Program of China 2018YFC0214103The project was supported by the National Key Research and Development Program of China (2018YFC0214103), the Xiamen Science and Technology Program Funds (3502Z20183025) and the Scientific Research Funds of Huaqiao University (605-50Y17071)

Figures(7)

  • In order to achieve the low-temperature (200-250℃) NH3-SCR, highly dispersed VOx-MnOx/CeO2 catalysts with different exposed facets were produced. The NH3-SCR performance results indicate that the NO conversion over VOx-MnOx/CeO2-R with preferentially exposed {110} facets can achieve NO conversion >95% over a wide temperature span of 220-330℃. From the in-situ DRIFTs, gaseous NH3 and NO are favorable to be absorbed on the surface of the VOx-MnOx/CeO2-R catalyst with preferentially exposed {110} facets, which improves the efficiency of NO conversion. The mechanism study via in situ DRIFTs demonstrates that the well dispersed vanadium species on CeO2 {110} absorb NH3 to generate NH3(L) and NH4+(B) species, which in turn become highly reactive toward bridging nitrate and bidentate nitrate species to form N2 and H2O according to the Langmuir-Hinshelwood mechanism.
  • 加载中
    1. [1]

      ZHOU X M, HUANG X Y, XIE A J, LUO S P, YAO C, LI X Z, ZUO S X. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature[J]. Chem Eng J, 2017,326:1074-1085. doi: 10.1016/j.cej.2017.06.015

    2. [2]

      WANG X X, CONG Q L, CHEN L, SHI Y, SHI Y, LI S J, LI W. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3:A comparative investigation with VWTi catalyst[J]. Appl Catal B:Environ, 2019,246:166-179. doi: 10.1016/j.apcatb.2019.01.049

    3. [3]

      LIU Z M, ZHANG S X, LI J H, ZHU J Z, MA L L. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3[J]. Appl Catal B:Environ, 2014,158:11-19.  

    4. [4]

      ZHAO Li, HAN Jian, WU Yang-wen, LU Qiang, YANG Yong-ping. Study on alkaline earth metal poisoning of vanadium-titanium based SCR denitration catalyst[J]. Chem Ind Eng Prog, 2019,38(3):1419-1426.  

    5. [5]

      WANG X M, LI X Y, ZHAO Q D, SUN W B, TADÉMOSES , LIU S M. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2016,288:216-222. doi: 10.1016/j.cej.2015.12.002

    6. [6]

      ZHANG D S, ZHANG L, SHI L Y, FANG C, LI H R, GAO R H, HUANG L, ZHANG J P. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale, 2013,5(3):1127-1136. doi: 10.1039/c2nr33006g

    7. [7]

      WU X M, YU X L, CHEN Z Y, HUANG Z W, JING G H. Low-valence or tetravalent cation doping of manganese oxide octahedral molecular sieve (K-OMS-2) materials for nitrogen oxide emission abatement[J]. Catal Sci Technol, 2019,9:4108-4117. doi: 10.1039/C9CY01016E

    8. [8]

      YU X L, WU X M, CHEN Z Y, HUANG Z W, JING G H. Oxygen vacancy defect engineering in Mn-doped CeO2 nanostructures for nitrogen oxides emission abatement[J]. Mol Catal, 2019,476:110512-110522.

    9. [9]

      WU X M, YU X L, HE X Y, JING G H. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves[J]. J Phy Chem C, 2019,123:10981-10990. doi: 10.1021/acs.jpcc.9b01048

    10. [10]

      MAI H X, SUN L D, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phy Chem B, 2005,109:24380-24385. doi: 10.1021/jp055584b

    11. [11]

      LI Y, WEI Z H, GAO F, KOVARIK L, PEDEN C H F, WANG Y. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol[J]. J Catal, 2014,315:15-24. doi: 10.1016/j.jcat.2014.04.013

    12. [12]

      SONG L Y, ZHANG R, ZANG S M, HE H, SU Y C, QIU W G, SUN X L. Activity of selective catalytic reduction of NO over V2O5/TiO2 catalysts preferentially exposed anatase {001} and {101} facets[J]. Catal Lett, 2017,147(4):934-945.  

    13. [13]

      TOPSØE N-Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science, 1994,265:1217-1219. doi: 10.1126/science.265.5176.1217

    14. [14]

      ZHANG Tie-jun, LI Jian, HE Hong, LIANG Wen-jun, LIANG Quan-ming. Effect of antimony doped vanadium-titanium catalyst on low-temperature NH3-SCR activity[J]. J Fuel Chem Technol, 2017,45(6):740-746. doi: 10.3969/j.issn.0253-2409.2017.06.013

    15. [15]

      ZHANG T, CHANG H Z, LI K Z, PENG Y, LI X, LI J H. Different exposed facets VOx/CeO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2018,349:184-191. doi: 10.1016/j.cej.2018.05.049

    16. [16]

      WANG Z L, FENG X D. Polyhedral shapes of CeO2 nanoparticles[J]. J Phy Chem B, 2003,107:13563-13566. doi: 10.1021/jp036815m

    17. [17]

      GORIS B, TURNER S, BALS S, VAN TENDELOO G. Three-dimensional valency mapping in ceria nanocrystals[J]. ACS Nano, 2014,8(10):10878-10884. doi: 10.1021/nn5047053

    18. [18]

      WU X M, YU X L, HUANG Z W, SHEN H Z, JING G H. MnOx-decorated VOx/CeO2 catalysts with preferentially exposed {110} facets for selective catalytic reduction of NOx by NH3[J]. Appl Catal B:Environ, 2020,268:118419-118433. doi: 10.1016/j.apcatb.2019.118419

    19. [19]

      PENG Y, WANG C Z, LI J H. Structure-activity relationship of VOx/CeO2 nanorod for NO removal with ammonia[J]. Appl Catal B:Environ, 2014,144:538-546. doi: 10.1016/j.apcatb.2013.07.059

    20. [20]

      LIU J, LI X Y, ZHAO Q D, KE J, XIAO H M, LV X J, LIU S M, MOSES T, WANG S B. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide:In situ FTIR analysis for structure-activity correlation[J]. Appl Catal B:Environ, 2017,200:297-308. doi: 10.1016/j.apcatb.2016.07.020

    21. [21]

      ZHAN S H, ZHANG H, ZHANG Y, SHI Q, LI Y, LI X J. Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(x)-CeO2 at low temperatures[J]. Appl Catal B:Environ, 2017,203:199-209. doi: 10.1016/j.apcatb.2016.10.010

  • 加载中
    1. [1]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    2. [2]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    5. [5]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    6. [6]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    7. [7]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    8. [8]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    13. [13]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    14. [14]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    15. [15]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    16. [16]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    17. [17]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(17)
  • Abstract views(1385)
  • HTML views(448)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return