in-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR
- Corresponding author: WU Xiao-min, wuxiaomin@hqu.edu.cn
Citation:
WU Xiao-min, NI Kai-wen, YU Xiao-long, ZHAO Ning. in-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(2): 179-188.
ZHOU X M, HUANG X Y, XIE A J, LUO S P, YAO C, LI X Z, ZUO S X. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature[J]. Chem Eng J, 2017,326:1074-1085. doi: 10.1016/j.cej.2017.06.015
WANG X X, CONG Q L, CHEN L, SHI Y, SHI Y, LI S J, LI W. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3:A comparative investigation with VWTi catalyst[J]. Appl Catal B:Environ, 2019,246:166-179. doi: 10.1016/j.apcatb.2019.01.049
LIU Z M, ZHANG S X, LI J H, ZHU J Z, MA L L. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3[J]. Appl Catal B:Environ, 2014,158:11-19.
ZHAO Li, HAN Jian, WU Yang-wen, LU Qiang, YANG Yong-ping. Study on alkaline earth metal poisoning of vanadium-titanium based SCR denitration catalyst[J]. Chem Ind Eng Prog, 2019,38(3):1419-1426.
WANG X M, LI X Y, ZHAO Q D, SUN W B, TADÉMOSES , LIU S M. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2016,288:216-222. doi: 10.1016/j.cej.2015.12.002
ZHANG D S, ZHANG L, SHI L Y, FANG C, LI H R, GAO R H, HUANG L, ZHANG J P. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale, 2013,5(3):1127-1136. doi: 10.1039/c2nr33006g
WU X M, YU X L, CHEN Z Y, HUANG Z W, JING G H. Low-valence or tetravalent cation doping of manganese oxide octahedral molecular sieve (K-OMS-2) materials for nitrogen oxide emission abatement[J]. Catal Sci Technol, 2019,9:4108-4117. doi: 10.1039/C9CY01016E
YU X L, WU X M, CHEN Z Y, HUANG Z W, JING G H. Oxygen vacancy defect engineering in Mn-doped CeO2 nanostructures for nitrogen oxides emission abatement[J]. Mol Catal, 2019,476:110512-110522.
WU X M, YU X L, HE X Y, JING G H. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves[J]. J Phy Chem C, 2019,123:10981-10990. doi: 10.1021/acs.jpcc.9b01048
MAI H X, SUN L D, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phy Chem B, 2005,109:24380-24385. doi: 10.1021/jp055584b
LI Y, WEI Z H, GAO F, KOVARIK L, PEDEN C H F, WANG Y. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol[J]. J Catal, 2014,315:15-24. doi: 10.1016/j.jcat.2014.04.013
SONG L Y, ZHANG R, ZANG S M, HE H, SU Y C, QIU W G, SUN X L. Activity of selective catalytic reduction of NO over V2O5/TiO2 catalysts preferentially exposed anatase {001} and {101} facets[J]. Catal Lett, 2017,147(4):934-945.
TOPSØE N-Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science, 1994,265:1217-1219. doi: 10.1126/science.265.5176.1217
ZHANG Tie-jun, LI Jian, HE Hong, LIANG Wen-jun, LIANG Quan-ming. Effect of antimony doped vanadium-titanium catalyst on low-temperature NH3-SCR activity[J]. J Fuel Chem Technol, 2017,45(6):740-746. doi: 10.3969/j.issn.0253-2409.2017.06.013
ZHANG T, CHANG H Z, LI K Z, PENG Y, LI X, LI J H. Different exposed facets VOx/CeO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2018,349:184-191. doi: 10.1016/j.cej.2018.05.049
WANG Z L, FENG X D. Polyhedral shapes of CeO2 nanoparticles[J]. J Phy Chem B, 2003,107:13563-13566. doi: 10.1021/jp036815m
GORIS B, TURNER S, BALS S, VAN TENDELOO G. Three-dimensional valency mapping in ceria nanocrystals[J]. ACS Nano, 2014,8(10):10878-10884. doi: 10.1021/nn5047053
WU X M, YU X L, HUANG Z W, SHEN H Z, JING G H. MnOx-decorated VOx/CeO2 catalysts with preferentially exposed {110} facets for selective catalytic reduction of NOx by NH3[J]. Appl Catal B:Environ, 2020,268:118419-118433. doi: 10.1016/j.apcatb.2019.118419
PENG Y, WANG C Z, LI J H. Structure-activity relationship of VOx/CeO2 nanorod for NO removal with ammonia[J]. Appl Catal B:Environ, 2014,144:538-546. doi: 10.1016/j.apcatb.2013.07.059
LIU J, LI X Y, ZHAO Q D, KE J, XIAO H M, LV X J, LIU S M, MOSES T, WANG S B. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide:In situ FTIR analysis for structure-activity correlation[J]. Appl Catal B:Environ, 2017,200:297-308. doi: 10.1016/j.apcatb.2016.07.020
ZHAN S H, ZHANG H, ZHANG Y, SHI Q, LI Y, LI X J. Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(x)-CeO2 at low temperatures[J]. Appl Catal B:Environ, 2017,203:199-209. doi: 10.1016/j.apcatb.2016.10.010
Ziliang KANG , Jiamin ZHANG , Hong AN , Xiaohua LIU , Yang CHEN , Jinping LI , Libo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
(a) VOx-MnOx/CeO2-R, (c) VOx-MnOx/CeO2-P, (e) VOx-MnOx/CeO2-C; and the corresponding mapping results: (b) VOx-MnOx/CeO2-R, (d) VOx-MnOx/CeO2-P, (f) VOx-MnOx/CeO2-C
(a) VOx-MnOx/CeO2-R, (c) VOx-MnOx/CeO2-P, (e) VOx-MnOx/CeO2-C; and the corresponding mapping results: (b) VOx-MnOx/CeO2-R, (d) VOx-MnOx/CeO2-P, (f) VOx-MnOx/CeO2-C
(a) VOx-MnOx/CeO2-R, (c) VOx-MnOx/CeO2-P, (e) VOx-MnOx/CeO2-C; and the corresponding mapping results: (b) VOx-MnOx/CeO2-R, (d) VOx-MnOx/CeO2-P, (f) VOx-MnOx/CeO2-C