Citation: Xue Pengxian, Long Zerong, Yuan Hui, Lan Wei. Research Advances in the Quality and Toxicology of Sulfur-Fumigated Chinese Medicine Materials[J]. Chemistry, ;2019, 82(7): 598-605, 597. shu

Research Advances in the Quality and Toxicology of Sulfur-Fumigated Chinese Medicine Materials

Figures(13)

  • Sulfur fumigation is a traditional drying method to prevent Chinese medicine materials from insects, molds and erosion etc, and can be used to bleach them. In recent years, investigations have found that the certain active components of traditional Chinese medicine (TCM) can be transformed into sulfur-containing derivatives in the process of sulfur fumigation, resulting in changes of metabolism and pharmacodynamics in the body, and even production of toxic reactions. This paper comprehensively summarizes the various morphologies of sulfur elements, chemical transformation rules of TCM and the toxicological studies in sulfur-fumigation. The review would provide valuable references for further evaluating the rationality of sulfur fumigation process of TCM.
  • 加载中
    1. [1]

       

    2. [2]

      X Jiang, L P Huang, S H Zheng et al. J. Sci. Food. Agric., 2013, 93: 2963-2972. 

    3. [3]

       

    4. [4]

      K Pei, H Cai, X Liu et al. J. Sep. Sci., 2015, 38(1): 25-33. 

    5. [5]

       

    6. [6]

       

    7. [7]

       

    8. [8]

       

    9. [9]

      J Liu, H Cai, X Liu et al. J. Chin. Med., 2011, 36(13): 1790-1793. 

    10. [10]

      H Zhang, J Chen, H Xiong et al. Org. Biomol. Chem., 2019, 17(06): 1-6.

    11. [11]

      F K Tittel, H Wu, H Zheng et al. Optics Express, 2017, 25(26): 32581-32590. 

    12. [12]

       

    13. [13]

       

    14. [14]

       

    15. [15]

       

    16. [16]

      G Viviana, S Alida, C C Victor et al. Antioxidants, 2018, 7(7): 87-104. 

    17. [17]

      D L Tang, Q Wang, Y N Chu et al. Spectrosc. Spect. Anal., 2018, 38(4): 1319-1323.

    18. [18]

      D H Truong, M A Eghbal, W Hindmarsh et al. Drug. MeTab. Rev., 2006, 38(4): 733-744. 

    19. [19]

       

    20. [20]

      L Dan, H Duan, Y Ma et al. Anal. Chem., 2018, 90(09): 5719-5727. 

    21. [21]

       

    22. [22]

      X X Cui, H H Yi, X L Tang et al. J. Chem. Technol. Biotechnol., 2018, 93(3): 720-729. 

    23. [23]

      V N Rad, M Anbia, M H Sadr. J. Environ. Sci-China., 2018, 15(3): 631-636.

    24. [24]

       

    25. [25]

      Z W Jia, B P Mao, S Miao et al. Acta Pharm. Sin., 2014, 49(2): 277-281.

    26. [26]

       

    27. [27]

       

    28. [28]

       

    29. [29]

      S Senthilkumaran, R G Menezes, S M M Ibrahim. Am. J. Emerg. Med., 2014, 32(1): 86-89.

    30. [30]

       

    31. [31]

      L Xiao, T Jiang, J Nie et al. J. Chin. Med., 2016, 41(12): 2216-2220.

    32. [32]

      C Wang, C Liang, J Ma et al. J. Biochem. Mol. Toxic., 2017, 32(02): 1-5.

    33. [33]

      M J Abramson, G P Benke, J Cui et al. Occup. Environ. Med., 2010, 67(10): 679-685. 

    34. [34]

      X B Wang, H F Jin, C S Tang et al. Clin. Exp. Pharmacol. Physiol., 2010, 37(7): 745-752.

    35. [35]

       

    36. [36]

       

    37. [37]

       

    38. [38]

       

    39. [39]

      J D Xu, Q Mao, H Shen et al. J. Chromatogr. A., 2013, 13(4): 154-168.

    40. [40]

       

    41. [41]

      S L Li, S Hong, L Y Zhu et al. J. Chromatogr. A., 2012, 31(12): 31-45.

    42. [42]

      B Ma, W L Kan, H Zhu et al. J. Ethnopharmcol., 2017, 195: 222-230. 

    43. [43]

      A L Guo, L M Chen, Y M Wang et al. Molecules, 2014, 19(10): 16640-16655. 

    44. [44]

       

    45. [45]

      X Q Ma, A K Leung, C L Chan et al. Analyst, 2014, 139(2): 505-516. 

    46. [46]

      P Y Hayes, R Lehmann, K Penman et al. Tetrahed. Lett., 2005, 46(15): 2615-2618. 

    47. [47]

      S L Li, J Z Song, F F Choi et al. J. Pharm. Biomed. Anal., 2009, 49(2): 253-266. 

    48. [48]

      M Kong, H H Liu, J Xu et al. J. Pharm. Biomed. Anal., 2014, 98(10): 424-433.

    49. [49]

      M Kong, H H Liu, J Wu et al. J. Ethnopharmacol., 2018, 212: 95-105. 

    50. [50]

       

    51. [51]

      X Y Li, J D Xu, J Xu et al. Anal. Methods-UK., 2016, 8(5): 1034-1043. 

    52. [52]

      Y J Bai, J D Xu, M Kong et al. Food. Res. Int., 2015, 76: 387-394. 

    53. [53]

      Y X Zhan, P Yao, W C Bi et al. Phytomedicine, 2014, 21(11): 1318-1324. 

    54. [54]

      H Cai, G Cao, L Li et al. Molecules, 2013, 18(2): 1368-1382. 

    55. [55]

      Z Y Li, H M Gao, J Sun et al. Helv. Chim. Acta., 2012, 95(7): 1144-1151. 

    56. [56]

       

    57. [57]

      J B S Braveman. J. Sci. Food. Agric., 2010, 4(11): 540-547.

    58. [58]

       

    59. [59]

       

    60. [60]

       

    61. [61]

      X H Wang, P S Xie, C W Lam et al. J. Pharm. Biomed. Anal., 2009, 49(5): 1221-1225. 

    62. [62]

       

    63. [63]

       

    64. [64]

      S Wang, L J Hao, J J Zhu et al. Phytomedicine, 2014, 21(5): 773-779. 

    65. [65]

      X Y Xing, Z H Sun, M H Yang et al. Molecules, 2018, 23(10): 2609. 

    66. [66]

      C Z Kang, Z Dan, L P Kang et al. Front. Plant. Sci., 2018, (1): 790-802.

    67. [67]

      X Q Ma, S M Li, T Su et al. Chin. Med-UK, 2016, 11(1): 32-44. 

    68. [68]

       

    69. [69]

      K Ding, G Cao, Z Xu et al. Nat. Prod. Commun., 2014, 9(9): 1357-1358.

    70. [70]

      J W Zhao, C Y Zheng, H Wei et al. Chem-Biol. Interact., 2018, 292: 84-93. 

    71. [71]

      M H Yuan, Z G Yan, L Yuan et al. J. Ethnopharmacol., 2019, 234: 76-84. 

    72. [72]

       

    73. [73]

      B Duan, L Huang, S Chen. Phytomedicine, 2012, 19(6): 562-568. 

    74. [74]

       

    75. [75]

      J He, Y He, C Zhang. Molecules, 2017, 22(9): 1402. 

    76. [76]

      Z L Zhan, A P Deng, L P Kang et al. J. Pharm. Biomed. Anal., 2018, 156: 340-348. 

    77. [77]

      L He, Z Zhang, Y Liu et al. Food. Res. Int., 2018, 108: 226-236. 

    78. [78]

      L Zhang, H Shen, J Xu et al. Food. Chem., 2017, 246: 202-210.

    79. [79]

      D Liu, F Galvanin, Y Yu. AAPS. PharmSciTech., 2018, 19(2): 1-10.

    80. [80]

      M H Mirjalili, P Salehi, M M Vala et al. Ind. J. Plant. Physiol., 2019, (4): 1-8.

  • 加载中
    1. [1]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    2. [2]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    3. [3]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    5. [5]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    9. [9]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    10. [10]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    11. [11]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    12. [12]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    13. [13]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    16. [16]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    20. [20]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

Metrics
  • PDF Downloads(20)
  • Abstract views(1292)
  • HTML views(420)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return