Citation: ZHAO Hui-ming, JIA Ting-hao, WANG Mei-jun, BAO Wei-ren, CHANG Li-ping. Upgrading of Zhaotong coal by pyrolysis and its effect on the gasification reactivity[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 904-910. shu

Upgrading of Zhaotong coal by pyrolysis and its effect on the gasification reactivity

  • Corresponding author: CHANG Li-ping, lpchang@tyut.edu.cn
  • Received Date: 29 February 2016
    Revised Date: 23 April 2016

Figures(9)

  • In order to integratedly utilize the relatively rich coal resource of Zhaotong mine, temperature-programmed pyrolysis experiments of Zhaotong lignite were performed in fixed bed reactor at different temperatures. The resultant coal tar and char were characterized by GC-MS and Raman Spectroscopy, respectively. Char-H2O isothermal gasification characteristics were evaluated in fixed bed reactor at 850℃. The results show that in pyrolysis at 700℃ the cumulative content of H2, CO and CH4 in gases accounts for about 70%, and the growth rate of low calorific value of gas is the fastest, which is 90% based on the value at 500℃. A large number of phenolic compounds are generated at 500-700℃. Above 700℃ the decomposition reactions of the phenolic compounds is intensified. With the increase of pyrolysis temperatures, the apparent reaction rate of char decreases, while the molar ratio of CO2 and CO increases. The molar ratio of H2 and CO in gasification from char pyrolyzed at 700℃ was the highest.
  • 加载中
    1. [1]

      OZTAS N A, YURUM Y. Pyrolysis of turkish zonguldak bituminous coal (1):Effect of mineral matter[J]. Fuel, 2000,79(10):1221-1227. doi: 10.1016/S0016-2361(99)00255-0

    2. [2]

      WANG Peng, WEN Fang, BU Xue-peng, LIU Yu-hua, BIAN Wen, DENG Yi-ying. Study on the pyrolysis characteristics of coal[J]. Coal Convers, 2005,28(1):8-13.

    3. [3]

      SHI Zhen-jing, XIA Zhi-xiang, FANG Meng-xiang, LI Chao, WANG Qin-hui, LUO Zhong-yang. Pyrolysis behavior of Huainan bituminous coal and formation characteristic of tar[J]. J Combust Sci Technol, 2014,20(1):58-64.  

    4. [4]

      ALONSO M J G, BORREGO A G, ALVAREZ D, MENENDEZ R. Pyrolysis behaviour of pulverised coals at different temperatures[J]. Fuel, 1999,78:1501-1513. doi: 10.1016/S0016-2361(99)00081-2

    5. [5]

      NDAJI F E, BUTTERFIELD I M, THOMAS K M. Changes in the macromolecular structure of coals with pyrolysis temperature[J]. Fuel, 1997,76(2):169-177. doi: 10.1016/S0016-2361(96)00175-5

    6. [6]

      WANG M J, TIAN J L, ROBERTS D G, CHANG L P, XIE K C. Interactions between corncob and lignite during temperature programmed co-pyrolysis[J]. Fuel, 2015,142:102-108. doi: 10.1016/j.fuel.2014.11.003

    7. [7]

      ZHONG Mei, MA Feng-yun. Analysis of product distribution and quality for continuous pyrolysis of coal indifferent atmospheres[J]. J Fuel Chem Technol, 2013,41(12):1427-1436.  

    8. [8]

      LI X H, MA J S, LI L L, LI B F, FENG J, TURMEL W, LI W Y. Semi-coke as solid heat carrier for low-temperature coal tar upgrading[J]. Fuel Process Technol, 2016,143:79-85. doi: 10.1016/j.fuproc.2015.11.013

    9. [9]

      KRERKKAIWAN S, FUSHIMI C, TSUTSUMI A, KUCHONTHARA P. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal[J]. Fuel Process Technol, 2013,115:11-18. doi: 10.1016/j.fuproc.2013.03.044

    10. [10]

      LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006,85(12/13):1700-1707.

    11. [11]

      REN Hai-jun, ZHANG Yong-qi, FANG Yi-tian, WANG Yang. Co-gasification properties of coal char and biomass char[J]. J Fuel Chem Technol, 2012,40(2):143-148.  

    12. [12]

      QI X J, GUO X, XUE L C, ZHENG C G. Effect of iron on Shenfu coal char structure and its influence on gasification reactivity[J]. J Anal Appl Pyrolysis, 2014,110:401-407. doi: 10.1016/j.jaap.2014.10.011

    13. [13]

      ZHAO B F, ZHANG X D, CHEN L, SUN L Z, SI H Y, CHEN G Y. High quality fuel gas from biomass pyrolysis with calcium oxide[J]. Bioresour Technol, 2014,156:78-83. doi: 10.1016/j.biortech.2014.01.031

    14. [14]

      DU Juan, WANG Jun-hong, CUI Yin-ping, HE Xiu-feng, CHANG Li-ping. Forming and releasing of gaseous products of coal during pyrolysis in Western China[J]. J China Univ Min Technol, 2008,37(5):694-698.  

    15. [15]

      ZHU Xue-dong, ZHU Zi-bin, HAN Chong-jia, TANG Li-hua. Fundamental study of coal pyrolysis:Functional group and pyrolysis products[J]. J East China Univ Sci Technol, 2000,26(1):14-17.  

    16. [16]

      YAN Jin-ding, CUI Hong, YANG Jian-li, LIU Zhen-yu. Research on pyrolysis behavior of Yanzhou coal using TG/MS[J]. J China Univ Min Technol, 2003,32(3):311-315.  

    17. [17]

      STEPHANIE G M, STEPHEN A W. Determination of polycyclic aromatic sulfur heterocycles in fossil fuel-related samples[J]. Anal Chem, 1999,71(1):58-69. doi: 10.1021/ac980664f

    18. [18]

      KONG J, ZHAO R F, BAI Y H, LI G L, ZHANG C, LI F. Study on the formation of phenols during coal flash pyrolysis using pyrolysis-GC/MS[J]. Fuel Process Technol, 2014,127:41-46. doi: 10.1016/j.fuproc.2014.06.004

    19. [19]

      XIE Ke-chang.Coal Structure and its Reactivity[M].Beijing:Science Press, 2002.

    20. [20]

      ELMER B L, NATHAN D M, ALYSSA K S, MARY J W. An experimental study on the thermal decomposition of catechol[J]. Proc Combust Inst, 2002,29:2299-2306. doi: 10.1016/S1540-7489(02)80280-2

    21. [21]

      SISKIN M, ACZEL T. Pyrolysis studies on the structure of ethers and phenols in coal[J]. Fuel, 1983,62:1321-1326. doi: 10.1016/S0016-2361(83)80017-9

    22. [22]

      LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behavior of Victorian brown coal[J]. Fuel, 2007,86(12/13):1664-1683.

    23. [23]

      YU J L, TIAN F J, CHOW M C, MCKENZIE L J, LI C Z. Effect of iron on the gasification of Victorian brown coal with steam:enhancement of hydrogen production[J]. Fuel, 2006,85:127-133. doi: 10.1016/j.fuel.2005.05.026

    24. [24]

      CHAO S, HU S, HE L M, XIANG J, SUN L S, SU S, JIANG L, CHEN Q D, XU C F. The synergistic effect of Ca (OH)2 on the process of lignite steam gasification to produce hydrogen-rich gas[J]. Int J Hydrogen Energy, 2014,39:15506-15516. doi: 10.1016/j.ijhydene.2014.07.111

  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    3. [3]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    4. [4]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    5. [5]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Zhiyang LiHui DengXinqi CaiZhuo Chen . Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics. Acta Physico-Chimica Sinica, 2024, 40(7): 2306051-0. doi: 10.3866/PKU.WHXB202306051

    10. [10]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    11. [11]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    14. [14]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(1)
  • Abstract views(1660)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return