Citation: REN Jun-bin, LI Jun-guo, ZHANG Yong-qi, WANG Zhi-qing, LI Feng-hai, FANG Yi-tian. Influence factors for fusion characteristics of mixed ash between biomass and bituminous coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1317-1322. shu

Influence factors for fusion characteristics of mixed ash between biomass and bituminous coal

  • Corresponding author: ZHANG Yong-qi, zhangyq@sxicc.ac.cn
  • Received Date: 15 June 2017
    Revised Date: 14 August 2017

    Fund Project: the National Natural Science Foundation of China 21676289The project was supported by the National Natural Science Foundation of China (21506242, 21676289)the National Natural Science Foundation of China 21506242

Figures(5)

  • Effects of atmosphere, mixing ratio and residue carbon on ash fusion characteristics of biomass and bituminous coal were investigated. The pine sawdust ash was mixed with Wuhai bituminous coal ash at different mass ratios. The ash fusion temperatures (AFTS) of the mixed ash in different atmospheres were determined by ash-melting point measuring device. X-ray diffraction ray was used to investigate the reason for AFTs variation from the perspective of minerals evolution. The result shows that AFTs of mixed ash in weak reducing atmosphere is lower than that in oxidizing one due to formation of fayalite and hercynite. In addition, the difference in AFTs under reducing and oxidizing atmosphere is related to the content of Fe in the mixed ash. The increment of pine sawdust ash favors generation of gehlenite, akermanite and leucite ect., which can be classified as low temperature eutectics and help to reduce the AFTs of mixed ash. Moreover, the AFTs of the mixed ash increase initially and decrease afterwards and then increase again with the increment of residue carbon content in coal ash, due to formation of Fe-C eutectic (FexCy), local reducing atmosphere and skeleton action of residue carbon.
  • 加载中
    1. [1]

      WU C Z, YIN X L, YUAN Z H, ZHOU Z Q, ZHUANG X S. The development of bioenergy technology in[J]. Energy, 2010,35(11):4445-4450. doi: 10.1016/j.energy.2009.04.006

    2. [2]

      LIN Le-teng, ZHOU Shi-xue, WANG Wen-chao. Study on hydrogenating extraction of biomass[J]. J Shandong Univ Sci Technol (Nat Sci), 2005,24(3):109-112.  

    3. [3]

      ZHOU Shi-xue, GUO Jun-li, LIU Xi-hua, JIANG Hai-tao. Research on the removal of sulfur and nitrogen during co-pyrolysis of high sulfur and strong caking coal with biomass[J]. J Shandong Univ Sci Technol (Nat Sci), 2000,19(2):33-37.  

    4. [4]

      JEONG H J, PARK S S, HWANG J. Co-gasification of coal-biomass blended char with CO2 at temperatures of 900-1100℃[J]. Fuel, 2014,116(116):465-470.  

    5. [5]

      LI S, CHEN X L, LIU A B, WANG L, YU G S. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor[J]. Bioresource Technol, 2014,155(2):252-257.

    6. [6]

      REN H J, ZHANG Y G, FANG Y T, WANG Y. Co-gasification behavior of meat and bone meal char and coal char[J]. Fuel Process Technol, 2011,92(3):298-307. doi: 10.1016/j.fuproc.2010.09.013

    7. [7]

      LI Zhen-zhu, LI Feng-hai, MA Ming-jie, HUANG Jie-jie, FANG Yi-tian. Review on co-gasification of biomass and coal in fluidized-bed[J]. Mod Chem Ind, 2014,34(7):12-15.  

    8. [8]

      XU Mei-ling, LI Feng-hai, LI Zhen-zhu. Regulatory mechanism of biomass on the ash fusion characteristics of the coal with a high fusion temperature[J]. Chem Eng, 2016,44(1):69-74.  

    9. [9]

      CHEN Xue-li, LIU Tao, LIU Xia, LIU Hai-feng. Effects of crop straw on coal ash fusion temperature and prediction of blend ash fusion temperature[J]. Proc Chin Soc Elect Eng, 2012,32(11):41-46.  

    10. [10]

      LI F H, XU M L, WANG T, FANG Y T, MA M J. An investigation on the fusibility characteristics of low-rank coals and biomass mixtures[J]. Fuel, 2015,158:884-890. doi: 10.1016/j.fuel.2015.06.010

    11. [11]

      HAYKIRI-ACMA H, YAMAN S, KUCUKBAYRAK S, MORCALI M H. Does blending the ashes of chestnut shell and lignite create synergistic interaction on ash fusion temperatures[J]. Fuel Process Technol, 2015,140:165-171. doi: 10.1016/j.fuproc.2015.09.005

    12. [12]

      HAYKIRI-ACMA H, YAMAN S, KUCUKBAYRAK S. Effect of biomass on temperatures of sintering and initial deformation of lignite ash[J]. Fuel, 2010,89(10):3063-3068. doi: 10.1016/j.fuel.2010.06.003

    13. [13]

      CHEN M Q, YU D, WEI Y H. Evaluation on ash fusion behavior of eucalyptus bark/lignite blends[J]. Powder Technol, 2015,286:39-47. doi: 10.1016/j.powtec.2015.07.043

    14. [14]

      FANG XI, JIA L. Experimental study on ash fusion characteristics of biomass[J]. Bioresource Technol, 2012,104(1)769.  

    15. [15]

      DAI Ai-jun. Research on influence of ash components in coal ash on ash fusibility[J]. Clean Coal Technol, 2007,13(5):23-26.  

    16. [16]

      CHEN Long, ZHANG Zhong-xiao, WU Xiao-jiang, CHEN Guo-yan. An experiment study on ash fusibility under weak deoxidation atmosphere and oxidation atmosphere[J]. Power System Eng, 2007,23(1):22-24.  

    17. [17]

      YIN Bing-yi. Study on the ash fusion property of biomass and coal blending[D]. Shandong:Shandong University, 2008. 

    18. [18]

      LI Wen, BAI Jin. Chemistry of Ash from Coal[M]. Beijing:Science Press, 2103, 266-267.

    19. [19]

      LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Research on the effect of the fusion characteristics of Xiaolongtan lignite[J]. Clean Coal Technol, 2010,16(6):49-53.  

  • 加载中
    1. [1]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    2. [2]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    3. [3]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    6. [6]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    7. [7]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    8. [8]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    9. [9]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    10. [10]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    11. [11]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    12. [12]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    13. [13]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    14. [14]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    17. [17]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    20. [20]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

Metrics
  • PDF Downloads(6)
  • Abstract views(2092)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return