Citation: Xiaofeng Jiang, Weizhao Yu, Jiqian Wang. The Surface Chemistry of Natural Materials for Oil-Water Separation[J]. Chemistry, ;2021, 84(4): 290-304, 321. shu

The Surface Chemistry of Natural Materials for Oil-Water Separation

  • Corresponding author: Jiqian Wang, jqwang@upc.edu.cn
  • Received Date: 13 September 2020
    Accepted Date: 19 October 2020

Figures(10)

  • The separation of oil/water emulsions and mixtures is highly significant to the pollution treatments of industrial oily wastewaters and oil spills. Superwetting materials have showed promising potentials for oil/water separation and attracted great interests. The recent advances in oil/water separation technologies through filtration and absorption, particularly the separation materials based on low-cost and eco-friendly natural materials with surperwetting properties, are reviewed. For each material, such as sand, wood sheet, coconut shell, representative research works are introduced, and their preparation process, inherent or modified wettability, as well as the related oil/water separation applications are described. The separation mechanisms of oil/water mixtures, oil-in-water (O/W) emulsions and water-in-oil (W/O) emulsions with superhydrophilic/underwater superoleophobic and superhydrophobic/superoleophilic materials are reviewed and discussed. Finally, the challenges and future research directions of the field are prospected.
  • 加载中
    1. [1]

      Igunnu E T, Chen G Z. Int. J. Low-Carbon Technol., 2014, 9(3): 157~177. 

    2. [2]

      Nasiri M, Jafari I. Period. Polytech. Chem. Eng., 2017, 61(2): 73~81.

    3. [3]

      Ahmadun F R, Pendashteh A, Abdullah L C, et al. J. Hazard. Mater., 2009, 170(2/3): 530~551.

    4. [4]

      Munirasu S, Abu H M, Banat F. Proc. Saf. Environ. Prot., 2016, 100: 183~202. 

    5. [5]

      Gupta R K, Dunderdale G J, England M W, et al. J. Mater. Chem. A, 2017, 5(31): 16025~16058. 

    6. [6]

      Xue Z, Cao Y, Liu N, et al. J. Mater. Chem. A, 2014, 2(8): 2445~2460. 

    7. [7]

      Li J, Li D M, Yang Y X, et al. Green Chem., 2016, 18(2): 541~549. 

    8. [8]

      Liu M J, Wang S T, Jiang L. Nat. Rev. Mater., 2017, 2(7): 17036. 

    9. [9]

      Feng L, Song Y L, Zhai J, et al. Angew. Chem. Int. Ed., 2003, 42(7): 800~802. 

    10. [10]

      Feng L, Zhang Z, Mai Z, et al. Angew. Chem. Int. Ed., 2004, 43(15): 2012~2014. 

    11. [11]

      Yu T L, Halouane F, Mathias D, et al. Chem. Eng. J., 2020, 384: 123339. 

    12. [12]

      He J, Zhang Y, Wang J, et al. J. Mater. Sci., 2020, 55(15): 6708~6720. 

    13. [13]

      Zhan Y, He S, Hu J, et al. J. Hazard. Mater., 2020, 388: 121752. 

    14. [14]

      Zhang F, Zhang W B, Shi Z, et al. Adv. Mater., 2013, 25(30): 4192~4198. 

    15. [15]

      Zhang L, Zhong Y, Cha D, et al. Sci. Rep., 2013, 3: 2326. 

    16. [16]

      Yong J, Chen F, Yang Q, et al. Adv. Mater. Interf., 2016, 3(7): 1500650. 

    17. [17]

      Tuteja A, Choi W, Ma M, et al. Science, 2007, 318(5856): 1618~1622. 

    18. [18]

      Xue Z, Liu M, Jiang L. J. Polym. Sci. B, 2012, 50(17): 1209~1224. 

    19. [19]

      Liu M J, Wang S T, Wei Z X, et al. Adv. Mater., 2009, 21(6): 665~669. 

    20. [20]

      Yuan S, Chen C, Raza A, et al. Chem. Eng. J., 2017, 328: 497~510. 

    21. [21]

      Mi H Y, Jing X, Huang H X, et al. ACS Appl. Mater. Inter., 2017, 9(43): 37529~37535. 

    22. [22]

      Wang M, Zhang Z, Wang Y, et al. ACS Appl. Mater. Inter., 2020, 12(22): 25512~25520. 

    23. [23]

      Wang R, Zhao X, Jia N, et al. ACS Appl. Mater. Inter., 2020, 12(8): 10000~10008. 

    24. [24]

      Zhu Y, Wang D, Jiang L, et al. NPG Asia Mater., 2014, 6(5): e101.

    25. [25]

      Tadros T F. Emulsion Formation and Stability, Wiley-VCH Verlag GmbH & Co. KGaA, 2013: 1~75.

    26. [26]

      Sharma M K, Shah D O. Macro-and Microemulsions in Enhanced Oil Recovery. In Macro-and Microemulsions, Theory and Applications. Shah D. O. Eds.; ACS Symposium Series, 1985: 149~172.

    27. [27]

      Tadros T, Izquierdo P, Esquena J, et al. Adv. Colloid Interf. Sci., 2004, 108-109: 303~318.

    28. [28]

      Genzer J, Efimenko K. Biofouling, 2006, 22(5): 339~360. 

    29. [29]

      Abbott N L, Folkers J P, Whitesides G M. Science, 1992, 257(5075): 1380~1382. 

    30. [30]

      Gau H, Herminghaus S, Lenz P, et al. Science, 1999, 283(5398): 46~49. 

    31. [31]

      Sorcar S, Razzaq A, Tian H N, et al. J. Ind. Eng. Chem., 2017, 46: 203~211. 

    32. [32]

      Schrader M E. Langmuir, 1995, 11(9): 3585~3589. 

    33. [33]

      Wolansky G, Marmur A. Colloids Surf. A, 1999, 156(1/3): 381~388.

    34. [34]

      Hsieh C T, Chen J M, Kuo R R, et al. Appl. Surf. Sci., 2005, 240(1/4): 318~326.

    35. [35]

      Feng X J, Jiang L. Adv. Mater., 2006, 18(23): 3063~3078. 

    36. [36]

      Feng L, Li S, Li Y, et al. Adv. Mater., 2002, 14(24): 1857~1860. 

    37. [37]

      Liu K S, Jiang L. Nano Today, 2011, 6(2): 155~175. 

    38. [38]

      Li J, Xu C C, Guo C Q, et al. J. Mater. Chem. A, 2018, 6(1): 223~230. 

    39. [39]

      Almojjly A, Johnson D, Oatley-Radcliffe D L, et al. J. Water Proc. Eng., 2018, 26: 17~27. 

    40. [40]

      Cao S H, Chen L G, Liu X J, et al. J. Saf. Environ., 2013, 13(4): 11~15.

    41. [41]

      Chen Y, Xue Z, Liu N, et al. RSC Adv., 2014, 4(22): 11447~11450. 

    42. [42]

      Wei B, Yue C, Liu J, et al. Sep. Purif. Technol., 2019, 229: 115808. 

    43. [43]

      Men X, Ge B, Li P, et al. J. Taiwan Inst. Chem. Eng., 2016, 60: 651~655. 

    44. [44]

      Wei B, Liu J, Wang G, et al. J. Water Reuse Desalin., 2018, 8(4): 544~522. 

    45. [45]

      Jiang L, Li S, Yu W, et al. Colloids Surf. A, 2016, 488: 20~27. 

    46. [46]

      Wang J, Xue G, Tian B, et al. Energy Fuels, 2017, 31(1): 408~417. 

    47. [47]

      Liu P, Niu L, Tao X, et al. Colloids Surf. A, 2019, 569: 1~9. 

    48. [48]

      Liu J, Zhu X, Zhang H, et al. Colloids Surf. A, 2018, 553: 509~514. 

    49. [49]

      Chen L, Wu Y, Guo Z. Mater. Des., 2017, 135: 377~384. 

    50. [50]

      Liu P, Niu L, Tao X, et al. Appl. Surf. Sci., 2018, 447: 656~663. 

    51. [51]

      Singh V, Jinka S, Hake K, et al. Ind. Eng. Chem. Res., 2014, 53(30): 11954~11961. 

    52. [52]

      Rana M, Chen J T, Yang S, et al. Adv. Mater. Interf., 2016, 3(16): 1600128. 

    53. [53]

      Liu F, Ma M, Zang D, et al. Carbohydr. Polym, 2014, 103: 480~487. 

    54. [54]

      Rather A M, Jana N, Hazarika P, et al. J. Mater. Chem. A, 2017, 5(44): 23339~23348. 

    55. [55]

      del Blanco M V, Fischer E J, Cabane E. Adv. Mater. Interf., 2017, 4(21): 1700584. 

    56. [56]

      Yong J, Chen F, Huo J, et al. ACS Omega, 2018, 3(2): 1395~1402. 

    57. [57]

      Zhou Y, Qu K, Zhang L, et al. J. Disper. Sci. Technol., 2020, 41, doi: 10.1080/01932691.2019.1679641.

    58. [58]

      Kavalenka M N, Hopf A, Schneider M, et al. RSC Adv., 2014, 4(59): 31079~31083. 

    59. [59]

      Oliveira N M, Reis R L, Mano J F. ACS Appl. Mater. Inter., 2013, 5(10): 4202~4208. 

    60. [60]

      Song W, Veiga D D, Custodio C A, et al. Adv. Mater., 2009, 21(18): 1830~1834. 

    61. [61]

      Latthe S S, Sutar R S, Shinde T B, et al. ACS Appl. Nano Mater., 2019, 2(2): 799~805. 

    62. [62]

      Li J, Zhao Z, Li D, et al. Appl. Surf. Sci., 2017, 419: 869~874. 

    63. [63]

      Li J, Xu C, Zhang Y, et al. J. Colloid Interf. Sci., 2018, 511: 233~242. 

    64. [64]

      Singh A K, Mishra S, Singh J K. Cellulose, 2019, 26(9): 5497~5511. 

    65. [65]

      Sumper M, Brunner E. Adv. Funct. Mater., 2006, 16(1): 17~26. 

    66. [66]

      Lo Y H, Yang C Y, Chang H K, et al. Sci. Rep., 2017, 7: 1426. 

    67. [67]

      Li J, Guan P, Zhang Y, et al. Sep. Purif. Technol., 2017, 174: 275~281. 

  • 加载中
    1. [1]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    2. [2]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    3. [3]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    6. [6]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    7. [7]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    8. [8]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    9. [9]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    10. [10]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    16. [16]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(20)
  • Abstract views(1275)
  • HTML views(346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return