Citation: CHEN Wu-hua, WANG Ye-fei, HE Zhen-pei, DING Ming-chen. Improvement of stability of nano-SiO2/HPAM/SDS dispersion systems and its effect on oil displacement performances[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1087-1096. shu

Improvement of stability of nano-SiO2/HPAM/SDS dispersion systems and its effect on oil displacement performances

  • Corresponding author: CHEN Wu-hua, cwh8157@163.com
  • Received Date: 7 July 2020
    Revised Date: 1 August 2020

    Fund Project: the National Science and Technology Major Project of China 2016ZX05058-003-003The project was supported by the National Science and Technology Major Project of China (2016ZX05058-003-003)

Figures(13)

  • The turbidity and Zeta potential experiments of nano-SiO2/HPAM/SDS dispersion systems at 60 ℃, 1.0×104 mg/L NaCl brine and simulated formation water were first investigated and the results indicated that Ca2+ and Mg2+ ions were responsible for the instability of dispersion system. Then, the methods of reducing pH value and adding chelating agents were used to improve the stability of nano-SiO2/HPAM/SDS dispersion system in simulated formation water, and the improvement effects and mechanisms were discussed based on sedimentation experiments and Zetasizer. The influences of these two methods on the oil displacement performances of dispersion system were analyzed by rheometer and interfacial tensiometer. The experimental results suggested that with the decrease of pH value, the stability of dispersion system was enhanced by the protection of H+ in the SiO2 double electric layer and the enhancement of hydration forces between particles although the absolute value of Zeta potential(|ζ|) of dispersion system decreased. All of the chelating agents including Na2EDTA, ATMP and Na4EDTA can improve the stability of dispersion system. Ca2+ and Mg2+ ions were complexed and pH value of dispersion system was decreased with the addition of Na2EDTA and ATMP, however, the decrease of pH value resulted in a sharp deterioration in the viscosity of dispersion systems. With the addition of Na4EDTA, the pH value of dispersion systems increased. The|ζ|, viscosity, storage modulus and loss modulus of dispersion systems all increased, which were benefited from the formation of stable complexes between Na4EDTA, and Ca2+ and Mg2+. Meanwhile, the ability of dispersion system to reduce oil and water interfacial tension was enhanced. Thus, after addition of Na4EDTA with mass ratio of 0.4% (optimal mass ratio)in dispersion system with nano-SiO2 mass ratio of 0.5%, the oil recovery was increased by 3.1%.
  • 加载中
    1. [1]

      LIU Xiao-xiao. Study on displacement effect factors of surfactant-polymer system and method of mobility control after polymer[D]. Daqing: Northeast Petroleum University, 2015. 

    2. [2]

      THOMAS S, ALI S M F, SCOULAR J R, VERKOCZY B. Chemical methods for heavy oil recovery[J]. J Can Pet Technol, 2001,40(3):56-61.  

    3. [3]

      LI Mei-rong, LIU Zhi, SONG Xin-wang, MA Bao-dong, ZHANG Wen. Effect of metal ions on the viscosity of polyacrylamide solution and the mechanism of viscosity degradation[J]. J Fuel Chem Technol, 2012,40(1):43-47.  

    4. [4]

      ZHANG L, ZHANG D, JIANG B. The rheological behavior of salt tolerant polyacrylamide solutions[J]. Chem Eng Technol, 2006,29:395-400. doi: 10.1002/ceat.200500306

    5. [5]

      SUN Chong. Preparation and performance evaluation of modified nano silica stabilized foam system[D]. Daqing: Northeast Petroleum University, 2018. 

    6. [6]

      WANG Yao. A study on nanofluids spreading on the reservoir cores surface and its displacement mechanism[D]. Xian: Xi'an Shiyou University, 2015. 

    7. [7]

      CORREDOR R L M, SARAPARDEH A H, HUSEIN M M, DONG P M. Rheological behavior of surface modified silica nanoparticles dispersed in partially hydrolyzed polyacrylamide and xanthan gum solutions:Experimental measurements, mechanistic understanding, and model development[J]. Energy Fuels, 2018,32(10):10628-10638. doi: 10.1021/acs.energyfuels.8b02658

    8. [8]

      MOHAMMED B A, KOUROSH R, RADZUAN J, ALI E B. Appraising the impact of metal-oxide nanoparticles on rheological properties of HPAM in different electrolyte solutions for enhanced oil recovery[J]. J Pet Sci Eng, 2019,172:1057-1068. doi: 10.1016/j.petrol.2018.09.013

    9. [9]

      BINKS B P, RODRIGUES J A, FRITH W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J]. Langmuir, 2007,23(14):3626-3636.  

    10. [10]

      KHALILINEZHAD S S, CHERAGHIAN G, ROAYAEI E, TABATABAEE H, KARAMBEIGI M S. Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles[J]. Energy Source Part A, 2017,12:1-10. doi: 10.1080/15567249.2014.881931

    11. [11]

      SAHA R, UPPALURI R V S, TIWARI P. Silica nanoparticle assisted polymer flooding of heavy crude oil:Emulsification, rheology, and wettability alteration characteristics[J]. Ind Eng Chem Res, 2018,57:6364-6376. doi: 10.1021/acs.iecr.8b00540

    12. [12]

      TAN Xiao-ping. The feasible research of improving sweep efficiency using the modified nano-SiO2/AA/AM copolymer[D]. Chengdu: Southwest Petroleum University, 2014. 

    13. [13]

      ZHENG Chao.Preparation of surface modified nanosilica and its impact on enhanced oil recovery of HPAM solution[D]. Kaifeng: Henan University, 2017. 

    14. [14]

      WANG Hai-ying. Study in the factors that influence HPAM solution viscosity and select the complexing agent[D]. Daqing: Northeastern Petroleum University, 2014. 

    15. [15]

      AMIRI A, ØYE G, SJOBLOM J. Influence of pH, high salinity and particle concentration on stability and rheological properties of aqueous suspensions of fumed silica[J]. Colloid Surface A, 2009,349:43-54. doi: 10.1016/j.colsurfa.2009.07.050

    16. [16]

      CHEN Wu-hua, WANG Ye-fei, HE Zhen-pei, DING Ming-chen. Stability, rheology and displacement performance of nano-SiO2/HPAM/SDS dispersion systems[J]. J Fuel Chem Technol, 2020,48(5):568-576.  

    17. [17]

      SHEN Zhong, ZHAO Zhen-guo, KANG Wan-li. Colloid and Surface Chemistry[M]. Beijing:Chemical Industry Press, 2012, 5.

    18. [18]

      AHUALLI S, IGLESIAS G R, WACHTER W. Adsorption of anionic and cationic surfactants on anionic colloids:Supercharging and destabilization[J]. Langmuir, 2011,27(15):9182-9192. doi: 10.1021/la201242d

    19. [19]

      LI Hui. Study on the preparation and stability of Ametryne suspension concentrate[D]. Taian: Shandong Agultural University, 2012. 

    20. [20]

      PENG Chen-liang, MIN Fan-fei, ZHAO Qing, LI Hong-liang. A review:Research status and process on hydration layers near fine mineral particles[J]. Acta Mineral Sin, 2012,32(4):515-522.  

    21. [21]

      ZHAN Yun. Analytical Chemistry[M]. Shanghai:Tongji University Press, 2003, 9.

    22. [22]

      ZHANG Rong-hua, ZHU Zhi-liang, DENG Shou-quan, NI Ya-ming. Study on the coordination chemistry of ATMP with Ca2+, Mg2+ in aqueous solution[J]. Ind Water Treat, 2003,23(7):25-27.  

    23. [23]

      LI Xiao-yang. The quantum chemical calculation of Ca(EDTA)2- complex and organic acid calcium compound[D]. Beijing: China University of Petroleum(Beijing), 2015. 

    24. [24]

      MENG Xiang-can. Study on synthesis and oil displacement property of cystine Gemini surfactants[D]. Qingdao: China University of Petroeum(East China), 2013. 

    25. [25]

      MAHMOUD M, ATTIA A, AL-HASHIN H. EDTA chelating agent/seawater solution as enhanced oil recovery fluid for sandstone reservoirs[J]. J Pet Sci Eng, 2017,152:275-283. doi: 10.1016/j.petrol.2017.03.019

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    8. [8]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    10. [10]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    11. [11]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    12. [12]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    13. [13]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    14. [14]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    18. [18]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    19. [19]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    20. [20]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

Metrics
  • PDF Downloads(2)
  • Abstract views(1041)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return