Citation: CHANG Guo-zhang, XIE Jian-jun, YANG Hui-kai, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Structure and pyrolysis characteristics of enzymatic/mild acidolysis lignin isolated from palm kernel shell[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1185-1194. shu

Structure and pyrolysis characteristics of enzymatic/mild acidolysis lignin isolated from palm kernel shell

  • Corresponding author: HUANG Yan-qin, huangyq@ms.giec.ac.cn
  • Received Date: 11 March 2016
    Revised Date: 4 July 2016

Figures(8)

  • Firstly, lignin of palm kernel shell (PKS) and wheat straw (WS) were isolated by enzymatic/mild acidolysis method (EMAL). Then the functional groups and thermal decomposition characteristics of the two EMALs were analyzed with Fourier transform infrared spectroscopy (FT-IR), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and TG-FTIR. At last, the Ozawa-Flynn-Wall method was used to calculate the activation energy of pyrolysis of the two EMALs. FT-IR result show that both PKS-EMAL and WS-EMAL are Type HGS. Phenols, acids, few of alcohols, aldehydes and ketones are detected in volatile products from 500℃ pyrolysis of the two EMALs. Meanwhile, H-type, G-type and S-type phenols with proportions of 47.61%, 25.64% and 17.18% are obtained in phenolic products from PKS-EMAL pyrolysis; while they are 23.66%, 51.90% and 15.50%, respectively, in phenolic products of WS-EMAL. During 200-380℃, the main weight loss rate of PKS-EMAL pyrolysis is 50.80%/min, which is obviously lower than that (78.63%/min) of WS-EMAL. A shoulder peak of 27.40%/min at 265℃ is also observed in PKS-EMAL pyrolysis, which is closely related to release of H-derivatives during PKS-EMAL pyrolysis. The activation energy (127.92 kJ/mol) of PKS-EMAL pyrolysis at a conversion of 20% reduced by the exothermic effect corresponding torelease of H-derivatives, which was the main reason that the average activation energy (152.32 kJ/mol) of PKS-EMAL pyrolysis (20%-80%) was lower than that (161.75 kJ/mol) for WS-EMAL pyrolysis.
  • 加载中
    1. [1]

      LUPOI J S, SINGH S, PARTHASARATHI R, SIMMONS B A, HENRY R J. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin[J]. Renew Sust Energy Rev, 2015,49:871-906. doi: 10.1016/j.rser.2015.04.091

    2. [2]

      CHEN Lei, CHEN Han-ping, LU Qiang, SONG Yang, DING Xue-jie, WANG Xian-hua, YANG Hai-ping. Characterization of structure and pyrolysis behavior of lignin[J]. J Chem Ind Eng, 2014,65(9):3626-3633.  

    3. [3]

      CHEN L, WANG X H, YANG H P, LU Q, LI D, YANG Q, CHEN H P. Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS[J]. J Anal Appl Pyrolysis, 2015,113:499-507. doi: 10.1016/j.jaap.2015.03.018

    4. [4]

      SHEN D K, GU S, LUO K H, WANG S R, FANG M X. The pyrolytic degradation of wood-derived lignin from pulping process[J]. Bioresour Technol, 2010,101:6136-6146. doi: 10.1016/j.biortech.2010.02.078

    5. [5]

      WANG S R, RU B, LIN H Z, SUN W X, LUO Z Y. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[J]. Bioresour Technol, 2015,182:120-127. doi: 10.1016/j.biortech.2015.01.127

    6. [6]

      WU Shu-bin, LI Meng-shi. Study on chemical structure characteristics of wheat straw lignin from enzymatic hydrolysis-mild acidolysis[J]. Chem Ind Forest Prod, 2006,26(1):104-108.  

    7. [7]

      LOU Rui.Formation rules and pathway adjustments of pyrolysates derived from non-wood lignin under different thermochemical conditions[D].Guangzhou:South China University of Technology, 2011.

    8. [8]

      WEN J L, SUN S L, XUE B L, SUN R C. Structual elucidation of inhomogeneous lignins from bamboo[J]. Int J Biol Macromol, 2015,77:250-259. doi: 10.1016/j.ijbiomac.2015.03.044

    9. [9]

      LOU Rui, WU Shu-bin, DONG Hao-liang, LV Gao-jin. Fast pyrolysis of enzymatic/mild acidolysis lignin from moso bamboo[J]. J Fuel Chem Technol, 2015,43(1):42-47.  

    10. [10]

      YANG H P, YAN R, CHEN H P, LEE D H, ZHENG C G. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,86:1781-1788. doi: 10.1016/j.fuel.2006.12.013

    11. [11]

      LOU R, WU S B. Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin[J]. Appl Energy, 2011,88:316-322. doi: 10.1016/j.apenergy.2010.06.028

    12. [12]

      CHENG Hui, YU Jian, YAO Hai-qin, XU Guang-wen. Mechanism analysis of lignin slow pyrolysis[J]. J Chem Ind Eng, 2013,64(5):1757-1765.

    13. [13]

      WU Hong-xiang, LI Hai-bin, FENG Yi-peng, WANG Xiao-bo, ZHAO Zeng-li, HE Fang. Effects of potassium on the pyrolysis of biomass components by TG-FTIR analysis[J]. J Fuel Chem Technol, 2013,41(8):950-957.  

    14. [14]

      MOHAMMED M A A, SALMIATON A, WAN AZLINA W A K G, AMRAN M S M, FAKHRUL-RAZI A, TAUFIQ-YAP Y H. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia[J]. Renew Sust Energ Rev, 2011,15(2):1258-1270. doi: 10.1016/j.rser.2010.10.003

    15. [15]

      CHANG Guo-zhang, HUANG Yan-qin, LAI Xi-rui, YIN Xiu-li, WU Chuang-zhi. Experimental study on the structure and reactivity of palm kernel shell chars during CO2 gasification[J]. J Fuel Chem Technol, 2015,43(8):1-8.  

    16. [16]

      ABNISA F, ARAMI-NIYA A, WAN DAUD W M A, SAHU J N. Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes[J]. Bioenergy Res, 2013,6(2):830-840. doi: 10.1007/s12155-013-9313-8

    17. [17]

      ZHANG Bin, WU Shu-bin, YIN Xiu-li, WU Chuang-zhi, QIU Ze-jing, MA Long-long. Structure and pyrolysis products analysis of acid hydrolysis lignin[J]. Acta Energy Sin, 2011,32(1):19-24.  

    18. [18]

      HE Chuan.Topochemistry and characterization of lignin during diluted acid pretreatment of Miscanthus×giganteus[D].Beijing:Beijing Forest University, 2015.

    19. [19]

      SHARMA R K, WOOTEN J B, BAKIGA V L, LIN X, CHAN W G, HAJALIGOL M R. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004,83(11/12):1469-1482.

    20. [20]

      LU Yao, WEI Xian-yong, ZONG Zhi-min, LU Yong-chao, ZHAO Wei, CAO Jing-pei. Structural investigationand application of lignins[J]. Prog Chem, 2013,25(5):838-858.  

    21. [21]

      JIANG G, NOWAKOWSKI D J, BRIDGWATER A V. Effect of the temperatureon the composition of lignin pyrolysis products[J]. Energy Fuels, 2010,24(8):4470-4475. doi: 10.1021/ef100363c

    22. [22]

      PENG C, ZHANG G, YUE J, XU G. Pyrolysis of lignin for phenols with alkaline additive[J]. Fuel Process Technol, 2014,124:212-221. doi: 10.1016/j.fuproc.2014.02.025

    23. [23]

      CHANG Guo-zhang, HUANG Yan-qin, XIE Jian-jun, YIN Xiu-li, WU Chuang-zhi. Products characteristics and kinetic analysis of palm kernel shell pyrolysis[J]. Chem Ind Forest Prod, 2016,36(4):31-40.

    24. [24]

      YANG Hai-ping, CHEN Han-ping, YAN Rong, ZHANG Shi-guang, ZHENG Chu-guang. TG-FTIR analysis of palm oil wastes pyrolysis[J]. J Fuel Chem Technol, 2006,34(3):309-314.  

    25. [25]

      DEL RIO J C, GUTIÉRREZ A, RODRÍGUEZ I M, IBARRA D, MARTINEZ A T. Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR[J]. J Anal Appl Pyrolysis, 2007,79(1):39-46.

    26. [26]

      SAMMONS R J, HARPER D P, LABBE N, BOZELL J J, ELDER T, RIALS T G. Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis[J]. BioResources, 2013,8(2):2751-2767.

    27. [27]

      NIU S L, HAN K H, LU C M. Kinetic calculations for the thermal decomposition of calcium propionate under non-isothermal conditions[J]. Chin Sci Bull, 2011,56(12):1278-1284. doi: 10.1007/s11434-010-4065-8

  • 加载中
    1. [1]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    2. [2]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    3. [3]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    4. [4]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    5. [5]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    6. [6]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    8. [8]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    9. [9]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    10. [10]

      Qiong Luo Zhiguang Xu Xuan Xu Ganquan Wang Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016

    11. [11]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Qingfeng Zhang Shang-E Wei Hua Hou Xuan Zhao Zixuan Yang Lin Zhuang . Construction and Reform of the Structural Chemistry Curriculum and Textbooks under the Chemistry “101 Plan”: an In-Depth Exploration for Cultivating Top-Notch Innovative Talents. University Chemistry, 2024, 39(10): 38-44. doi: 10.12461/PKU.DXHX202409047

    14. [14]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    15. [15]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    16. [16]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    17. [17]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    18. [18]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(4)
  • Abstract views(1784)
  • HTML views(728)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return