Citation: DING Run-dong, ZU Yun, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 451-458. shu

Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite

  • Corresponding author: QIN Yu-cai, qycgryx@163.com SONG Li-juan, lsong56@263.net
  • Received Date: 8 December 2017
    Revised Date: 6 February 2018

    Fund Project: the National Natural Science Foundation of China 21376114Liaoning Province, PhD Research Initiated Fund Project 201601318the National Natural Science Foundation of China U1662135The project was supported by the National Natural Science Foundation of China (U1662135, 21376114), Liaoning Province, PhD Research Initiated Fund Project (201601318) and Major Program of Petroleum Refining of Catalyst of Petro China Company Limited

Figures(7)

  • A series of CuNaY zeolites with different Cu loadings were prepared from NaY by liquid-phase ion exchange (LPIE) method. The microstructure and textural properties of CuNaY zeolites were characterized by XRD and N2 sorption and their adsorption desulfurization performance were evaluated with a model oil containing thiophene by the dynamic adsorption method. Combined with the Py-FTIR and NH3-TPD methods, the amounts of surface acid sites and effective Cu+ species were determined quantitatively and a correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite towards thiophene was then established. The results revealed that the surface acidity and the active copper species in Y zeolite can be regulated effectively by controlling the copper loading; an adsorbent provided with abundant effective adsorption sites and excellent adsorption desulfurization performance can be obtained by loading appropriate amount of copper. On the contrary, an excessively high copper loading may promote the formation of polymeric copper species in the cavity of Y zeolite, which leads to a decrease in the number of effective adsorption sites as well as a decrease in the adsorption capacity of CuNaY zeolite towards thiophene.
  • 加载中
    1. [1]

      LI B, XU D, JIANG Z Y, ZHANG X F, LIU W P, DONG X. Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline[J]. J Membrane Sci, 2008,322(2):293-301. doi: 10.1016/j.memsci.2008.06.015

    2. [2]

      AVIDAN A, CULLEN M. Sulphco-desulfurization via selective oxidation-pilot plant results and commercialization plans[M]. National Petrochemical Refiners Association, 2001.

    3. [3]

      FUNAKOSHI I, AIDA T. Process for recovering organic sulfur compounds from fuel oil US, 5753102[P]. 1998.

    4. [4]

      TANG Ke, SONG Li-juan, DUAN Lin-hai, Li Xiu-qi, GUI Jian-zhou, SUN Zhao-lin. Deep desulfurization by selective adsorption on heteroatom zeolite prepared by secondary synthesis[J]. Acta Phys Chim Sin, 2006,22(9):1116-1120.  

    5. [5]

      MEI H, MEI B W, YEN T F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization[J]. Fuel, 2003,82(4):405-414. doi: 10.1016/S0016-2361(02)00318-6

    6. [6]

      LANSBARKIS J R, WILSONS T, ZINNEN H A. Zeolitic capillary columas for gas chromatography: US, 5719322[P]. 1998.

    7. [7]

      YANG R T, HERNANDEZ-MALDONADO A J, YANG F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003,301(5629):79-81. doi: 10.1126/science.1085088

    8. [8]

      HERNÁNDEZ-MALDONADO A J, YANG R T. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(Ⅰ)-Y zeolites[J]. J Amer Chem Soc, 2004,126(4):992-993. doi: 10.1021/ja039304m

    9. [9]

      HERNÁNDEZ-MALDONADO A J, YANG F H, QI G, YANG R T. Desulfurization of transportation fuels by π-complexation sorbents:Cu (I)-, Ni (Ⅱ)-, and Zn (Ⅱ)-zeolites[J]. Appl Catal B:Environ, 2005,56(1/2):111-126.  

    10. [10]

      FAN Min-guang, LI Bin, ZHANG Fei-yue, LI Wang-liang, XING Jian-min, LIU Zi-li. Distribution of copper ions in a CuLaHY zeolite and its performance in adsorption desulfurization[J]. Acta Phys Chim Sin, 2009,25(3):495-501.  

    11. [11]

      JIANG M, NG F T T. Adsorption of benzothiophene on Y zeolites investigated by infrared spectroscopy and flow calorimetry[J]. Catal Today, 2006,116(4):530-536. doi: 10.1016/j.cattod.2006.06.034

    12. [12]

      QIN Yu-cai, GAO Xiong-hou, PEI Ting-ting, ZHENG Lan-ge, WANG lin, MO Zhou-sheng, SONG Li-juan. Adsorption and catalytic conversion of thiophene on Y-type zeolites modified with rare-earth metal ions[J]. J Fuel Chem Technol, 2013,41(7):889-896.  

    13. [13]

      WANG Wang-yin, PAN Ming-xue, QIN Yu-cai, WANG Ling-tao, SONG Li-juan. Effects of surface acidity on the adsorption desulfurization of Cu(Ⅰ)Y zeolites[J]. Acta Phys Chim Sin, 2011,27(5):1176-1180.  

    14. [14]

      PETERSON A A, ABILD-PEDERSEN F, STUDT F, ROSSMEISL J, NØRSKOV J K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy Environ Sci, 2010,3(9):1311-1315. doi: 10.1039/c0ee00071j

    15. [15]

      STUDT F, SHARAFUTDINOV I, ABILD-PEDERSEN F, ELKJÆR C F, HUMMELSHØJ J S, DAHL S, NØRSKOV , J K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J]. Nat Chem, 2014,6(4):320-324. doi: 10.1038/nchem.1873

    16. [16]

      JIA Wei-ming, QIN Yu-cai, ZHANG Le, MO Zhou-sheng, SONG Li-juan, SUN Zhao-lin. Study on accessibility and catalytic activity of Y zeolite modified by Ce-species[J]. Pet Process Petrochem, 2017,48(6):14-19.  

    17. [17]

      SHERRY H S. The ion-exchange properties of zeolites. I. Univalent ion exchange in synthetic faujasite[J]. J Phys Chem C, 1966,70(4):1158-1168. doi: 10.1021/j100876a031

    18. [18]

      ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol, 2015,43(7):862-869.  

    19. [19]

      ZU Y, QIN Y C, GAO X H, LIU H H, ZHANG X T, ZHANG J D, SONG L J. Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y[J]. Appl Catal B:Environ, 2017,203:96-107. doi: 10.1016/j.apcatb.2016.10.008

    20. [20]

      FOWKES A J, IBBERSON R M, ROSSEINSKY M J. Structural characterization of the redox behavior in copper-exchanged sodium zeolite Y by high-resolution powder neutron diffraction[J]. Chem Mater, 2002,14(2):590-602. doi: 10.1021/cm010504b

    21. [21]

      KVHL G H. The coordination of aluminum and silicon in zeolites as studied by X-ray spectrometry[J]. J Phys Chem Solids, 1977,38(11):1259-1263. doi: 10.1016/0022-3697(77)90025-7

    22. [22]

      AMANO F, TANAKA T, FUNABIKI T. Auto-reduction of Cu(Ⅱ) species supported on Al2O3 to Cu(Ⅰ) by thermovacuum treatment[J]. J Mol Catal A:Chem, 2004,221(1):89-95.  

    23. [23]

      SUN P, YU D, FU K, GU M, WANG Y, HUANG H, YING H. Potassium modified NaY:A selective and durable catalyst for dehydration of lactic acid to acrylic acid[J]. Catal Commun, 2009,10(9):1345-1349. doi: 10.1016/j.catcom.2009.02.019

  • 加载中
    1. [1]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    2. [2]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    7. [7]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    16. [16]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    20. [20]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

Metrics
  • PDF Downloads(3)
  • Abstract views(779)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return