Citation: XU Feng, TIAN Yao-yao, LI Fan, BI Fang-qiang, ZHU Li-hua. Preparation of plasma modified CuO/γ-Al2O3 catalyst and its catalytic performance in the combustion of low-concentration methane[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1257-1264. shu

Preparation of plasma modified CuO/γ-Al2O3 catalyst and its catalytic performance in the combustion of low-concentration methane

  • Corresponding author: ZHU Li-hua, zhulihua79@163.com
  • Received Date: 6 March 2018
    Revised Date: 11 July 2018

    Fund Project: the National Natural Science Foundation of China 51504087The project was supported by the National Natural Science Foundation of China (51504087)

Figures(13)

  • A series of CuO/γ-Al2O3 catalysts were prepared by conventional impregnation and then modified with low temperature plasma at atmospheric pressure in a dielectric barrier discharge (DBD) reactor. These modified catalysts were used in the catalytic combustion of low-concentration methane. The effects of Cu loading and plasma modification process on the activity of CuO/γ-Al2O3 catalyst were investigated. The results show that the catalytic activity is the best when the loading of Cu is 7%. Modification gas and its space velocity, discharge voltage, discharge frequency, plasma treatment time are the factors that affect the activity of the catalyst. O2 plasma treatment has effect on increasing the activity of CuO/γ-Al2O3 catalyst, and N2 plasma treatment reduces the catalytic activity. When oxygen as the modification gas, the optimum modification process conditions are 45 kV of the discharge voltage, 14.71 kHz of the discharge frequency, 30 min of the plasma treatment time, and 20 mL/(min·g) of the oxygen space velocity. The catalyst, which is modified under the above process conditions, exhibits excellent catalytic activity for the combustion of low-concentration methane. Using this catalyst, t10, t50 and t90 are decreased by 23, 6 and 19 ℃, respectively. Compared with the conventional CuO/γ-Al2O3 catalyst, the plasma modified CuO/γ-Al2O3 catalyst can depress the apparent activation energy of the catalytic combustion reaction of low-concentration methane from 79.27 to 76.12 kJ/mol. The parent and modified samples were characterized by diverse techniques including SEM, BET, XRD, XPS and H2-TPR. The results show that the O2 plasma can adjust specific surface area, the electron density around atom Cu and mobility of bulk phase oxygen of the catalyst, thereby affect the adsorption, activation and conversion of methane on the surface of the catalyst in the combustion of low-concentration methane.
  • 加载中
    1. [1]

      HUO Chun-xiu, LI Qiang. Experimental study on catalytic combustion of ventilation air methane[J]. Min Saf Environ Prot, 2014,41(4):1-3. doi: 10.3969/j.issn.1008-4495.2014.04.001

    2. [2]

      CHEN Yan-rong, LI Hao-jie, YANG Zhong-qing, FAN Hu. Structure of CuO/Al2O3-MgO catalyst modified by ultrasound assisted dispersion and its catalytic performance in the combustion of lean methane[J]. J Fuel Chem Technol, 2015,43(1):122-128. doi: 10.3969/j.issn.0253-2409.2015.01.019

    3. [3]

      SHI Bing-bing, JIANG Zhi-dong. La0.8Ca0.2FeO3/MgO honeycombs for catalytic lean burn of methane[J]. Nat Gas Chem Ind, 2013,38(3):12-17. doi: 10.3969/j.issn.1001-9219.2013.03.003

    4. [4]

      CHEN Yu-juan, LIU Xiao-yang, LIU Sheng-yu, ZHANG Su-hong. Research of catalytic combustion performance of coal mine ventilation air with low concentration methane by CuO/Al2O3 catalyst[J]. Chin Coal, 2014,40(7):126-130. doi: 10.3969/j.issn.1006-530X.2014.07.033

    5. [5]

      ZHU Li-hua, XU Feng, CUI Bao-jun, GAO Hong-liang. Catalytic combustion of ventilation air methane over CuO/ZrO2 catalyst modified by low temperature plasm[J]. J Chin Coal Soc, 2017,42(S2):391-397.  

    6. [6]

      ZHU Li-hua, XU Feng, GAO Hong-liang, CUI Bao-jun, WU Qing-you. Effect of plasma treatment on performance of CuO/ZrO2 catalyst in combustion of ventilation air methane[J]. J Heilongjiang Univ Sci Technol, 2017,27(4):443-447. doi: 10.3969/j.issn.2095-7262.2017.04.024

    7. [7]

      WARMUZINSKI K. Harnessing methane emissions from coal mining[J]. Process Saf Environ Prot, 2008,86(5):315-320. doi: 10.1016/j.psep.2008.04.003

    8. [8]

      SU S, CHEN H. Characteristics of coal mine ventilation air flows[J]. J Environ Manage, 2008,86(1):44-62.  

    9. [9]

      LIU Huan, LIANG Wen-jun, LI Jian, WANG Hong-ming, HE Hong. Experimental research on flow reverse catalytic combustion of ventilation air methane[J]. Ind Catal, 2013,21(3):65-69. doi: 10.3969/j.issn.1008-1143.2013.03.013

    10. [10]

      LIU Wen-ge, GUO De-yong, XU Xin, LIU Jian-zhou, DUN Li-ye. Synthesis and activity of novel Cu-Mn composite catalyst for ventilation air methane combustion[J]. J Chin Univ Min Technol, 2014,43(5):887-904.  

    11. [11]

      XU Xin, LIU Wen-ge, LIU Jian-zhou, HAN Jia-ye, FAN Chuan-feng. Catalytic reaction mechanism of Pd/Zr/Al2O3 catalyst for ventilation air methane combustion[J]. J Chin Coal Soc, 2017,42(3):659-664.  

    12. [12]

      ZHANG Li, LIU Jian-jun, YANG Zhong-qing, ZHENG Shi-wei. The effects of sulfur poisoning on combustion characteristics of low concentration methane with SO2 over Cu/γ-Al2O3catalysts[J]. J Fuel Chem Technol, 2014,42(5):1-6.  

    13. [13]

      LIU Jian-jun, YANG Zhong-qing, ZHANG Li. Effect of Ni addition on the catalytic performance of Cu/γ-Al2O3 in the combustion of lean methane containing SO2[J]. J Fuel Chem Technol, 2014,42(10):1253-1258. doi: 10.3969/j.issn.0253-2409.2014.10.016

    14. [14]

      YANG Z, GRACE J R. Combustion of low-concentration coal bed methane in a fluidized bed reactor[J]. Energy Fuels, 2011,25(3):975-980. doi: 10.1021/ef101573y

    15. [15]

      HUANG Liang. Study on activation and conversion of methane using non-thermal plasma[D]. Hangzhou: Zhejiang University, 2012.

    16. [16]

      WANG Yue-juan, GUO Mei-na, LU Ji-qing, LUO Meng-fei. Mesoporous alumina supported PdO catalysts for catalytic combustion of methane[J]. Chin J Catal, 2011,39(9):1496-1501.  

    17. [17]

      WANG Hai-tao. Effect of low temperature plasma on catalyst during partial oxidation of methane to syngas[D]. Tianjin: Tianjin University, 2004.

    18. [18]

      FOIX M, GUYON C, TATOULIAN M, COSTA D. Study of the use of fluidized bed plasma reactors for the treatment of alumina supported palladium catalyst:Application for SCR NOx by CH4 in stationary sources[J]. Catal Commun, 2010,12(1):20-24.

    19. [19]

      BELESSI V C, LADAVOS A K, POMONIS P J. Methane combustion on La-Sr-Ce-Fe-O mixed oxides:Bifunctional synergistic action of SrFeO3-x and CeOx phases[J]. Appl Catal B:Environ, 2001,31(3):183-187. doi: 10.1016/S0926-3373(00)00279-4

    20. [20]

      ABBASI R, WU L, WANKE S E. Kinetics of methane combustion over Pt and Pt-Pd catalysts[J]. Chem Eng Res Des, 2012,90(11):1930-1942. doi: 10.1016/j.cherd.2012.03.003

    21. [21]

      ZHANG Jia-jin, LI Jian-wei, ZHU Ji-qin, WANG Yue, CHEN Biao-hua. Effect of promoter on the performance of Cu-Mn complex oxide monolithic catalysts for lean methane catalytic combustion[J]. Chin J Catal, 2011,32(8):1380-1386.  

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(6)
  • Abstract views(888)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return