Citation: Bin Shao, Jing Li, Ruikun Gong, Chuanjin Cui. Non-Enzymatic Glucose Electrochemical Sensors Based on Metal Organic Frameworks[J]. Chemistry, ;2021, 84(4): 339-345, 329. shu

Non-Enzymatic Glucose Electrochemical Sensors Based on Metal Organic Frameworks

  • Corresponding author: Ruikun Gong, grk@ncst.edu.cn
  • Received Date: 15 September 2020
    Accepted Date: 10 November 2020

Figures(3)

  • Rapid and effective detection of glucose plays an important role in maintaining human health, disease control and diagnosis, biological science and food science. Metal-organic frameworks (MOFs) have been successfully developed as a non-enzymatic glucose electrochemical sensor based on its catalytic activity and large specific surface area. Based on the unmodified MOFs, MOFs doped nanometer metal particles, metal and metal oxide core@MOFs, carbon nanomaterials@MOFs, and core-shell MOFs, the research progress in detecting glucose in recent years was reviewed, and the detection ability of doped materials was also reviewed, the future development of non-enzymatic glucose electrochemical sensors was prospected as well.
  • 加载中
    1. [1]

      Wang J. Chem. Rev., 2008, 108: 814~825. 

    2. [2]

      Karim M N, Anderson S R, Singh S, et al. Biosens. Bioelectron., 2018, 110: 8~15. 

    3. [3]

      Tian J, Liu S, Luo Y, et al. Catal. Sci. Technol., 2012, 2(2): 432~436. 

    4. [4]

      Wang L, Zhu W, Lu W, et al. Biosens. Bioelectron., 2018, 111: 41~46. 

    5. [5]

      Lu W, Qin X, Asiri A M, et al. Analyst, 2013, 138(2): 417~420. 

    6. [6]

      Chen T, Liu D, Lu W, et al. Anal. Chem., 2016, 88: 7885~7889. 

    7. [7]

      Kim D, Moon J, Lee W, et al. Biosens. Bioelectron., 2017, 91: 276~283. 

    8. [8]

      Prehn R, Cortina-Puig M, Pascual F X M. J. Electrochem. Soc., 2012, 159(8): F134.

    9. [9]

      Liu J M, Shen X M, Baimanov D, et al. ACS Appl. Mater. Inter., 2019, 11(3): 2647~2654. 

    10. [10]

      W Q Q, Zhang X P, Huang L, et al. Angew. Chem. Int. Ed., 2017, 56(50): 16082~16085. 

    11. [11]

      Kumar G G, Amala G, Gowtham S M. RSC Adv., 2017, 7(59): 36949~36976. 

    12. [12]

      Wang Q, Zhang Y, Ye W. J. Solid State Electrochem., 2016, 20: 133~142. 

    13. [13]

      Zou H, He B, Kuang P, et al. ACS. Appl. Mater. Inter., 2018, 10(26): 22311~22319. 

    14. [14]

      Bin Q, Wang M, Wang L. Nanotechnology, 2020, 31(12): 125601. 

    15. [15]

      Wang Y, Wang L, Chen H, et al. ACS Appl. Mater. Inter., 2016, 8: 18173. 

    16. [16]

      Ellis J E, Zeng Z, Hwang S I, et al. Chem. Sci., 2019, 10(3): 737~742. 

    17. [17]

      Hendon C H, Tiana D, Walsh A. Phys. Chem. Chem. Phys., 2012, 14(38): 13120~13132. 

    18. [18]

      Allendorf M D, Medishetty R, Fischer R A. MRS Bull., 2016, 41(11): 865~869. 

    19. [19]

      Talin A A, Centrone A, Ford A C, et al. Science, 2014, 343(6166): 66~69. 

    20. [20]

      D'Alessandro D M. Chem. Commun., 2016, 52(58): 8957~8971. 

    21. [21]

      Wu L, Lu Z W, Ma Y, et al. Chin. J. Anal. Chem., 2020, 48(3): e20038-e20046.

    22. [22]

      Qiao Y X, Liu Q, Lu S Y, et al. J. Mater. Chem. B, 2020, 25(8): 5411~5415.

    23. [23]

      Li Y, Xie M W, Zhang X P, et al. Sens. Actuat. B, 2019, 278: 126~132. 

    24. [24]

      Saeed S, Milad E, Hadi H. Talanta, 2020, 210: 120696. 

    25. [25]

      Gilang G, Yusuf V K, Joel H, et al. Chem. Sci., 2020, 11(14): 3644~3655. 

    26. [26]

      Chuang C H, Kung C V. Electroanalysis, 2020, 32: 1885~1895. 

    27. [27]

      Joni I M, Zannuary I, Hidayat D, et al. AIP Conf. Proc., 2015, 1712: 030008.

    28. [28]

      Dong X Y, Ji X H, Jing J, et al. J. Phys. Chem. C., 2010, 114(5): 2070~2074. 

    29. [29]

      Peng X R, WanY, Wang Y Y, et al. Electroanalysis, 2019, 31(11): 2179~2186. 

    30. [30]

      Chen J L, Yin H Y, Zhou J L, et al. J. Electron. Meter., 2020, 49(8): 4754~4763. 

    31. [31]

      Zhu Q Z, Hu S Y, Zhang L Q, et al. Sens. Actuat. B., 2020, 313: 128031. 

    32. [32]

      Liu Y, Shi W J, Lu Y K, et al. Inorg. Chem., 2019, 58(24): 16743~16751. 

    33. [33]

      Luo Z, Yuwen L, Han Y. Biosens. Bioelectron., 2012, 36(1): 179~185. 

    34. [34]

      Uzak D, Atiroğlu A, Atiroğlu V, et al. Electroanalysis, 2019, 32(3): 510~519.

    35. [35]

      Lin L, Karakocak B, Kavadiya S, et al. Sens. Actuat. B, 2018, 259: 745~752. 

    36. [36]

      Heyser C, Schrebler R, Grez P. J. Electroanal. Chem., 2019, 832: 189~195. 

    37. [37]

      Bilal S, Ullah W, Shah A A. Electrochim. Acta, 2018, 284: 382~391. 

    38. [38]

      Asadian E, Shahrokhiana S, Zad A I. J. Electroanal. Chem., 2018, 808: 114~123. 

    39. [39]

      Xiao X L, Peng S H, Wang C, et al. J. Electroanal. Chem., 2019, 841: 94~100. 

    40. [40]

      Archana V, Xia Y, Fang R Y, et al. ACS Sustain. Chem. Eng., 2019, 7(7): 6707~6719. 

    41. [41]

      Ding J Y, Zhong L, Wang X, et al. Sens. Actuat. B, 2019, 306: 127551.

    42. [42]

      Wei C H, Xin L, Wei X, et al. Sens. Actuat. B, 2020, 324: 128773. 

    43. [43]

      Wang F, Wang X, Liu D P, et al. ACS Appl. Mater. Inter., 2014, 6(24): 22216~22223. 

    44. [44]

      Wang H W, Wang C L, Yan H, et al. J. Catal., 2015, 324: 59~68. 

    45. [45]

    46. [46]

      Zhu G, Fiston M N, Qian J, et al. Anal. Methods, 2019, 11: 1125~1130. 

    47. [47]

      Kim D, Yun J, Lee G, et al. Nanoscale, 2014, 6(20): 12034~12041. 

    48. [48]

      Yun S, Kim J. Sens. Actuat. A, 2009, 154(1): 73~78. 

    49. [49]

      Zheng W Q, Liu Y Y, Yang P P, et al. J. Electroanal. Chem., 2020, 862: 114081.

    50. [50]

      Wu L, Lu Z, Ye J. Biosens. Bioelectron., 2019, 135: 45~49. 

    51. [51]

      Shahrokhian S, Ezzati M, Hosseini H. Talanta, 2020, 210: 120696. 

    52. [52]

      Sun S R, Tang Y, Wu C. Anal. Chim. Acta, 2020, 1107: 55~62. 

    53. [53]

      Yang X, Yuan S, Zou L, et al. Angew. Chem. Int. Ed., 2018, 57: 3927~3932. 

    54. [54]

      Peng Y, Zhao M, Chen B, et al. Adv. Mater., 2018, 30(3): 1705454. 

    55. [55]

      Lu M X, Deng Y J, Li Y C, et al. Anal. Chim. Acta, 2020, 1110: 35~43. 

    56. [56]

      Yu CP, Cui J W, Wang Y, et al. Appl. Surf. Sci., 2018, 439: 11~17. 

    57. [57]

    58. [58]

      Lei M, Li Y, Lu A H, et al. Chin. J. Catal., 2019, 40(4): 567~579. 

    59. [59]

      Zhi F J, Zhao J X, Guo X N, et al. Chin. J. Catal., 2020, 41(2): 357~363. 

    60. [60]

      Allendorf M D, Raghavender M, Fischer R A. MRS Bull., 2016, 41(11): 865~869. 

    61. [61]

      Llobet E. Sens. Actuat. B, 2013, 179: 32~45. 

    62. [62]

      Thostenson E T, Ren Z F, Chou T W. Compos. Sci. Technol., 2001, 61(13): 1899~1912. 

    63. [63]

      Dinca M, Campbell M G, Sun L. Angew. Chem. Int. Ed., 2016, 55(11): 3566~3579. 

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    7. [7]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    20. [20]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

Metrics
  • PDF Downloads(10)
  • Abstract views(720)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return