Citation: Sun Heng, Qian Junjuan, Yi Yinhui, Zhu Gangbing, Wu Xiangyang. Synthesis of Hollow Carbon Sphere and Its Application in Electrochemistry[J]. Chemistry, ;2017, 80(7): 637-641, 683. shu

Synthesis of Hollow Carbon Sphere and Its Application in Electrochemistry

Figures(6)

  • Hollow carbon sphere (HCS) exhibits excellent physical and chemical properties such as high specific surface area and conductivity, good chemical stability and thermal conductivity, which makes it widely applied in electrochemical energy storage, electrochemical catalyze, electrochemical sensors, etc. Based on this, the synthesis methods of HCS and its recent applications in electrochemistry were summarized, and some critical challenges and prospects in this field were also discussed.
  • 加载中
    1. [1]

      C H Xiao, X Chen, Z Y Fan et al. Nanotechnology, 2016, 27:445402.

    2. [2]

      D Ugarte. Nature, 1992, 359:707~709.

    3. [3]

      A Krishnan, E Dujardin, M M J Treacy et al. Nature, 1997, 388:451~454.

    4. [4]

      K S Novoselov, A K Geim, S V Morozov et al. Science, 2004, 306:666~669.

    5. [5]

      L Li, S Hong, X Chen. Carbon, 2006, 44(3):596~599.

    6. [6]

      J Zhang, R J Perez, E J Lavernia. J. Mater. Sci., 1993, 28(9):2395~2404.

    7. [7]

      Z Zhong, Y Yin, B Gates et al. Adv Mater., 2000, 12(12):206~209.

    8. [8]

      M Yang, J Ma, S Ding et al. Macromol. Chem. Phys., 2006, 207(18):1633~1639.

    9. [9]

      Y Li, Y Yang, J Shi et al. Micropor. Mesopor. Mater., 2008, 112(1):597~602.

    10. [10]

      R Liu, S M Mahurin, C Li et al. Angew. Chem. Int. Ed., 2011, 50(30):6799~6802.

    11. [11]

      T Harada, S Ikeda, F Hashimoto et al. Langmuir, 2010, 26(22):17720~17725.

    12. [12]

      H Wang, L Y Shi, T T Yan et al. J. Mater. Chem. A, 2014, 2(13):4739~4750.

    13. [13]

      Y Yi, G B Zhu, H Sun et al. Biosens. Bioelectron., 2016, 86:62~67.

    14. [14]

      J Wu, C Jin, Z R Yang et al. Carbon, 2015, 82:562~571.

    15. [15]

      S Y Wu, Y S Ding, X M Zhang et al. Mater Lett., 2008, 62:3301~3304.

    16. [16]

      B J Ji, P Kim, W Kim et al. Curr. Appl. Phys., 2008, 8(6):814~817.

    17. [17]

      M M Titirici, A Thormas, M Antonietti. Adv. Funct. Mater., 2007, 17(6):1010~1018.

    18. [18]

    19. [19]

      Y Cui, Y Tang, X Wang. Mater. Lett., 2015, 161:197~200.

    20. [20]

      G Li, C Guo, C Sun et al. J. Phys. Chem. C, 2008, 112(6):1896~1900.

    21. [21]

      X C Chen, K Kierzek, K Cendrowski et al. Collids Surf. A, 2012, 396(7):246~250.

    22. [22]

      I Nongwe, V Ravat, R Meijboom et al. Appl. Catal. A, 2013, 466:1~8.

    23. [23]

      X F Li, M F Chi, S M Mahurin et al. Carbon, 2016, 101:57~61.

    24. [24]

    25. [25]

      X Chen, K Kierzek, Z Jiang et al. J. Phys. Chem. C, 2011, 115(36):17717~17724.

    26. [26]

      K Wenelska, A Ottmann, P Schneider et al. Energy, 2016, 103:100~106.

    27. [27]

      W M Zhang, J S Hu, Y G Guo et al. Adv. Mater., 2008, 20:1160~1165.

    28. [28]

    29. [29]

      M Klose, R Reinhold, K Pinkert et al. Carbon, 2016, 106:306~313.

    30. [30]

      X Liu, L Zhou, Y Zhao et al. ACS Appl. Mater. Interf., 2013, 5(20):10280~10287.

    31. [31]

      S Ren, Y Yang, M Xu et al. Colloids Surf. A, 2014, 444(4):26~32.

    32. [32]

      C Z Wu, X Zhu, L L Ye et al. Inorg. Chem., 2006, 45:8543~8550.

    33. [33]

      B Fang, M Kim, J H Kim et al. Langmuir, 2008, 24(20):12068~12072.

    34. [34]

      C Zhang, J Li, E Liu et al. Carbon, 2012, 50(10):3513~3521.

    35. [35]

      J Zhang, L Ma, M G Gan et al. J. Power Source, 2015, 288:42~52.

    36. [36]

      J Wu, F Hu, X Hu et al. Electrochim. Acta, 2008, 53(28):8341~8345.

    37. [37]

      X Y Qiu, P Wu, L Xu et al. Adv. Mater. Interf., 2016, 2(18):1500321.

    38. [38]

      Z Chen, D He, X Xu et al. RSC Adv., 2016, 6(41):34159~34164.

    39. [39]

      G Zhu, P Gai, Y Yang et al. Anal. Chim. Acta, 2012, 723:33~38.

    40. [40]

      L Wei, Y Lei, H Fu et al. ACS Appl. Mater. Interf., 2012, 4(3):1594~1600.

    41. [41]

      Y Zhang, J Zhang, Y Liu et al. Mater. Res. Bull., 2012, 47(4):1034~1039.

    42. [42]

    43. [43]

      G Zhu, Y Yi, H Sun et al. J. Mater. Chem. B, 2015, 3(1):45~52.

    44. [44]

      T Gan, Z Shi, K Wang et al. J. Solid State Electrochem., 2015, 19(8):2299~2309.

    45. [45]

    46. [46]

      C Xiao, X Chu, Y Yang et al. Biosens. Bioelectron., 2011, 26(6):2934~2939.

    47. [47]

      Y Li, X Cao, X Qian et al. J. Electroanal. Chem., 2012, 686(11):7~11

    48. [48]

      Z R Zad, S S H Davarani, A R Taheri et al. Biosens. Bioelectron., 2016, 86:616~622.

    49. [49]

      H Dong, Z Zhu, H Ju et al. Biosens. Bioelectron., 2015, 760:143.

    50. [50]

    51. [51]

      Y F Sun, L J Zhao, T J Jiang et al. J. Electroanal. Chem., 2016, 760:143~150.

    52. [52]

      L H Zhang, W C Li, D Yan et al. Nanoscale, 2016, 8:13695~13700.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    8. [8]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    9. [9]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    10. [10]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    11. [11]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    19. [19]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(73)
  • Abstract views(4421)
  • HTML views(1529)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return