Citation: GUO Shu-jia, WANG Sen, LUO Yao-ya, LUO Li, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Effect of H-ZSM-5 zeolite morphology on the performance of bifunctional ZnCr2O4/H-ZSM-5 catalysts in the direct conversion of syngas into aromatics[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 970-979. shu

Effect of H-ZSM-5 zeolite morphology on the performance of bifunctional ZnCr2O4/H-ZSM-5 catalysts in the direct conversion of syngas into aromatics

  • Corresponding author: WANG Sen, wangsen@sxicc.ac.cn QIN Zhang-feng, qzhf@sxicc.ac.cn
  • Received Date: 8 June 2020
    Revised Date: 26 July 2020

    Fund Project: the National Natural Science Foundation of China U1862101the National Natural Science Foundation of China U1910203the National Natural Science Foundation of China 21773281Natural Science Foundation of Shanxi Province of China 201901D211581the National Natural Science Foundation of China 21802157the National Natural Science Foundation of China 21991092The project was supported by the National Natural Science Foundation of China (21991092, U1910203, U1862101, 21773281, 21802157) and Natural Science Foundation of Shanxi Province of China (201901D211581)

Figures(7)

  • A series of H-ZSM-5 zeolites with different morphologies including spherical, hollow, sheet and sponge-strip forms were hydrothermally synthesized through elaborately controlling the synthesis conditions and their crystal structural, textural and acidic properties were characterized by XRD, SEM, Py-FTIR, NH3-TPD, ICP and N2-sorption. The H-ZSM-5 zeolites of different morphologies and a spinel ZnCr2O4 oxide were then used to compose the bifunctional ZnCr2O4/H-ZSM-5 catalysts for the direct conversion of syngas into aromatics (STA). The effect of H-ZSM-5 morphology on the catalytic performance of ZnCr2O4/H-ZSM-5 in STA was then investigated. The results indicate that the morphology of H-ZSM-5 zeolites has significant influences on the catalytic performance of ZnCr2O4/H-ZSM-5 in STA.The selectivity to aromatics over the bifunctional catalysts with different H-ZSM-5 morphologies follows the order of sphere > sponge-strip > hollow > sheet. In particular, the ZnCr2O4/H-ZSM-5(sphere) catalyst composed of ZnCr2O4 and spherical H-ZSM-5 exhibits excellent performance in STA; under 350℃ and 3.0 MPa, a high selectivity of 68.8% to aromatics is achieved, with a CO conversion of 12.6%, whereas the selectivities to CH4, C2-40 alkanes and CO2 decrease to 1.3%, 14.3% and 41.4%, respectively. The isotropic and moderate particle size (about 350 nm) with appropriate pore length of spherical H-ZSM-5 zeolite are capable of avoiding the formation of lower hydrocarbons from early diffusion out of the acid zeolite channels and meanwhile yet conducive to the diffusion of aromatics, which can promote the aromatization of intermediates in STA and enhance the selectivity to aromatic products.
  • 加载中
    1. [1]

      XU Y, LIU D, LIU X. Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and H-ZSM-5 zeolites[J]. Appl Catal A:Gen, 2018,552:168-183. doi: 10.1016/j.apcata.2018.01.012

    2. [2]

      SETTLE A E, BERSTIS L, RORRER N A, ROMAN-LESHKOV Y, BECKHAM G T, RICHARDS R M, VARDON D R. Heterogeneous Diels-Alder catalysis for biomass-derived aromatic compounds[J]. Green Chem, 2017,19(15):3468-3492. doi: 10.1039/C7GC00992E

    3. [3]

      DING Ming. Recent progress of aromatics industry and development trend[J]. Guangdong Chem Ind, 2015,42(7):78-80.  

    4. [4]

      YUNG M M, JABLONSKI W S, MAGRINI-BAIR K A. Review of catalytic conditioning of biomass-derived syngas[J]. Energy Fuels, 2009,23(3/4):1874-1887.  

    5. [5]

      CHANG C D, LANG W H, SILVESTRI A J. Synthesis gas conversion to aromatic-hydrocarbons[J]. J Catal, 1979,56(2):268-273. doi: 10.1016/0021-9517(79)90113-1

    6. [6]

      YANG J H, PAN X L, JIAO F, LI J, BAO X H. Direct conversion of syngas to aromatics[J]. Chem Commun, 2017,53(81):11146-11149. doi: 10.1039/C7CC04768A

    7. [7]

      CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017,3(2):334-347. doi: 10.1016/j.chempr.2017.05.007

    8. [8]

      LUO Yao-ya, WANG Sen, GUO Shu-jia, YUAN Kai, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Study on different synthesis methods of ZnxCe2-yZryO4/SAPO-34 catalyst and its catalytic performance in syngas to low-carbon olefins[J]. J Fuel Chem Technol, 2020,48(05):594-600.  

    9. [9]

      YANG Cheng, ZHANG Cheng-hua, XU Jian, Wu Bao-shan, YANG Yong, LI Yong-wang. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. J Fuel Chem Technol, 2016,44(7):837-844.  

    10. [10]

      LIU J G, HE Y R, YAN L L, LI K, ZHANG C H, XIANG H W, WEN X D, LI Y W. Nano-sized ZrO2 derived from metal-organic frameworks and their catalytic performance for aromatic synthesis from syngas[J]. Catal Sci Technol, 2019,9(11):2982-2992. doi: 10.1039/C9CY00453J

    11. [11]

      ZHOU W, SHI S, WANG Y, ZHANG L, WANG Y, ZHANG G, MIN X, CHENG K, ZHANG Q, KANG J, WANG Y. Selective conversion of syngas to aromatics over a Mo-ZrO2/H-ZSM-5 bifunctional catalyst[J]. ChemCatChem, 2019,11(6):1681-1688. doi: 10.1002/cctc.201801937

    12. [12]

      LIU C, LIU S, ZHOU H B, SU J J, JIAO W Q, ZHANG L, WANG Y D, HE H Y, XIE Z K. Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization[J]. Appl Catal A:Gen, 2019,585:117206-117215. doi: 10.1016/j.apcata.2019.117206

    13. [13]

      YANG X L, SUN T, MA J G, SU X, WANG R F, ZHANG Y R, DUAN H M, HUANG Y Q, ZHANG T. The influence of intimacy on the 'iterative reactions' during OX-ZEO process for aromatic production[J]. J Energy Chem, 2019,35:60-65. doi: 10.1016/j.jechem.2018.11.003

    14. [14]

      GILANI S Z A, LU L, ARSLAN M T, ALI B, WANG Q, WEI F. Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5[J]. Catal Sci Technol, 2020,10(10):3366-3375. doi: 10.1039/D0CY00275E

    15. [15]

      ZHOU W, ZHOU C, YIN H R, SHI J Q, ZHANG G Q, ZHENG X L, MIN X J, ZHANG Z Q, CHENG K, KANG J C, ZHANG Q H, WANG Y. Direct conversion of syngas into aromatics over a bifunctional catalyst:Inhibiting net CO2 release[J]. Chem Commun, 2020,56(39):5239-5242. doi: 10.1039/D0CC00608D

    16. [16]

      FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009,10(12):1582-1585. doi: 10.1016/j.catcom.2009.04.021

    17. [17]

      CHOI M, NA K, KIM J, SAKAMOTO Y, TERASAKI O, RYOO R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009,461:246-249. doi: 10.1038/nature08288

    18. [18]

      WANG K, DONG M, LI J, LIU P, ZHANG K, WANG J, FAN W. Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics[J]. Catal Sci Technol, 2017,7(3):560-564. doi: 10.1039/C6CY02476A

    19. [19]

      YANG J H, GONG K, MIAO D Y, JIAO F, PAN X L, MENG X J, XIAO F S, BAO X H. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. J Energy Chem, 2019,35:44-48. doi: 10.1016/j.jechem.2018.10.008

    20. [20]

      XU Y, LIU J, WANG J, MA G, LIN J, YANG Y, LI Y, ZHANG C, DING M. Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts[J]. ACS Catal, 2019,9(6):5147-5156. doi: 10.1021/acscatal.9b01045

    21. [21]

      LI Q H, HEDLUND J, STERTE J, CREASER D, BONS A J. Synthesis and characterization of zoned MFI films by seeded growth[J]. Microporous Mesoporous Mater, 2002,56(3):291-302. doi: 10.1016/S1387-1811(02)00503-6

    22. [22]

      NA J, LIU G, ZHOU T, DING G, HU S, WANG L. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013,143(3):267-275. doi: 10.1007/s10562-013-0963-0

    23. [23]

      WEI Z H, XIA T F, LIU M H, CAO Q S, XU Y R, ZHU K, ZHU X D. Alkaline modification of ZSM-5 catalysts for methanol aromatization:The effect of the alkaline concentration[J]. Front Chem Sci Eng, 2015,9(4):450-460. doi: 10.1007/s11705-015-1542-2

    24. [24]

      WANG Yu-jie, FU Ting-jun, MA Zhe, SHAO Juan, MA Qian, LI Han, GUO Yu-hang, CUI Li-ping, LI Zhong. Recent progress on the control of microporous channel for ZSM-5 catalyst in methanol to hydrocarbon[J]. Chem Ind Eng Prog, 2019,38(10):4554-4563.  

    25. [25]

      JANG H G, MIN H K, LEE J K, HONG S B, SEO G. SAPO-34 and ZSM-5 nanocrystals' size effects on their catalysis of methanol-to-olefin reactions[J]. Appl Catal A:Gen, 2012,437:120-130.  

  • 加载中
    1. [1]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(10)
  • Abstract views(2045)
  • HTML views(515)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return