Citation: Li Yanping, Gao Ge, Feng Chuanqi, Yan Dongwei, Zhou Shaoxiong. Study on the Preparation and Electrochemical Performance of Ni0.8Co0.15Al0.05C2O4@Graphene Composites[J]. Chemistry, ;2017, 80(11): 1049-1054. shu

Study on the Preparation and Electrochemical Performance of Ni0.8Co0.15Al0.05C2O4@Graphene Composites

Figures(5)

  • Transition metal oxalate/graphene composites have excellent electrochemical performance which are widely used in lithium ion batteries. In this work, with the raw materials of NiSO4·6H2O, CoSO4·7H2O, Al2(SO4)3·18H2O and H2C2O4 at a certain molar ratio prepared into solution, precursor Ni0.8Co0.15Al0.05C2O4 was obtained by hydrothermal reaction for 12 h under 120℃. Then transition metal oxalate/graphene composites Ni0.8Co0.15Al0.05C2O4@Graphene were prepared by reduction of graphene oxide. And the structure, morphology and electrochemical properties of materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). SEM indicated that all the samples were cuboid with uniform size and irregular shape. Electrochemical test showed that the capacity of NCA-C2O4@G was higher than that of NCA-C2O4. And the first discharge capacity of NCA-C2O4@G composites at 0.1 C density is 1956 mAh/g. After at 0.1 C, 0.2 C, 0.5 C, 1.0 C, 2.0 C for cycles, the discharge capacity of composite material could be quickly increased to 720 mAh/g when the test conditions recovered to 100 mA/g, and the capacity keeps stable in the subsequent 50 cycles. These indicated that as-prepared NCA-C2O4@G composites have good electrochemical performance.
  • 加载中
    1. [1]

      E Uchaker, G Cao. Nano Today, 2014, 9(4):499~524. 

    2. [2]

      M M Thackeray, C Wolverton, E D Isaacs. Energy Environ. Sci., 2012, 5(7):7854~7863. 

    3. [3]

      B Dunn, J M Tarascon. Science, 2011, 334(6058):928. 

    4. [4]

      Z Wu, G Zhou, L Yin et al. Nano Energy, 2012, 1(1):107~131. 

    5. [5]

      Y Xu, G Jian, Y Liu. Nano Energy, 2014, 3:26~35. 

    6. [6]

      Q An, F Lv, Q Liu et al. Nano Lett., 2014, 14(11):6250~6256. 

    7. [7]

      Q Zhang, H Chen, X Han et al. ChemSusChem, 2016, 9(2):186~196. 

    8. [8]

      X Jia, Z Chen, X Cui et al. ACS Nano, 2012, 6(11):9911~9919. 

    9. [9]

      H Sohn, Z Chen, Y S Jung et al. J. Mater. Chem. A, 2013, 1(14):4539~4545. 

    10. [10]

      K Yang, Y Hong, Y Kang et al. ChemSusChem, 2013, 6(12):2299~2303. 

    11. [11]

      G Zhang, X W D Lou. Angew. Chem. Int. Ed., 2014, 53(34):9041~9044. 

    12. [12]

      Y Guo, L Yu, C Wang et al. Adv. Funct. Mater., 2015, 25(32):5184~5189. 

    13. [13]

      L Shen, Q Che, H Li et al. Adv. Funct. Mater., 2014, 24(18):2630~2637. 

    14. [14]

      G Huang, F Zhang, X Du et al. ACS Nano, 2015, 9(2):1592~1599. 

    15. [15]

      X Fan, J Shao, X Xiao et al. J. Mater. Chem. A, 2014, 2(43):18367~18374. 

    16. [16]

      B Liu, J Zhang, X Wang et al. Nano Lett., 2012, 12(6):3005~3011. 

    17. [17]

      W Zhou, J Zhu, C Cheng et al. Energy Environ. Sci., 2011, 4(12):4954~4961. 

    18. [18]

      Y Li, Q Zhang, J Zhu et al. J. Mater. Chem. A, 2014, 2(9):3163~3168. 

    19. [19]

      W Wei, S Yang, H Zhou et al. Adv. Mater., 2013, 25(21):2909~2914. 

    20. [20]

      X Wang, X Zhou, K Yao et al. Carbon, 2011, 49(1):133~139. 

    21. [21]

      H Sun, X Sun, T Hu et al. J. Phys. Chem. C, 2014, 118(5):2263~2272. 

    22. [22]

      S Choi, Y Kang. ChemSusChem, 2014, 7(2):523~528. 

    23. [23]

      S Yang, X Feng, S Ivanovici et al. Angew. Chem., 2010, 122(45):8586~8589. 

    24. [24]

    25. [25]

       

    26. [26]

    27. [27]

      L Eben, B Wang, H Peng et al. J. Power Sources, 2014, 258(1):9~18. 

    28. [28]

      G Hou, B Cheng, Y Cao et al. Nano Energy, 2016, 24(7):111~120.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    7. [7]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    10. [10]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    11. [11]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    12. [12]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

Metrics
  • PDF Downloads(6)
  • Abstract views(1249)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return