Citation: TIAN Shu-xun, CHENG Ji-hong, DI Wei, CHEN Qiang, LONG Jun-ying, LUO Xi, HU Yun-jian, MENG Xiang-kun, SUN Shou-li, SUN Qi. Study on the selective hydrogenation of acetic acid to ethanol[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 862-869. shu

Study on the selective hydrogenation of acetic acid to ethanol

  • Corresponding author: TIAN Shu-xun, tianshuxun@nicenergy.com
  • Received Date: 5 January 2016
    Revised Date: 1 April 2016

    Fund Project: The project was supported by the Science and Technology Innovation Program of Shenhua Group 2014-NICF-5

Figures(8)

  • Effects of temperature, pressure, acetic acid (HAC) feeding rate and H2/HAC (GHSV or H2 flow) on the conversion of acetic acid, product selectivities and the productivity of ethanol in selective hydrogenation of acetic acid to ethanol were investigated in a fixed-bed reactor. The good stability of the lab-made catalyst was verified. The results show that the reaction rate of esterification and decarboxylation/ketonization are very fast. Selectivities of ethyl acetate and acetone are affected by the catalyst composition and reaction conditions. The hydrodecarbonylation of acetic acid to methane and the further conversion of ethanol can be avoided when the contact time of the reactants with the catalyst is less than 5 s. Optimum reaction conditions were found at 280 ℃, 2.5 MPa, LHSV=0.72 h-1, H2/HAC (mol ratio)=16, under which the selectivity of ethyl acetate could reach 6%.Life time test more than 900 h shows that the lab-made catalyst has a good potential for industrial application.
  • 加载中
    1. [1]

      CHEN Qing-ling, YANG Wei-min, TENG Jia-wei. Recent advances in coal to chemicals technology developed by SINOPEC[J]. Chin J Catal, 2013,34(1):217-224.  

    2. [2]

      SU Hui-bo, LIN Hai-long, LI Fan, JING Su-tong, WANG Wei. Mechanism study and analysis on emission reduction of pollutants with ethanol gasoline[J]. Chin J Environ Eng, 2015,9(2):823-829.  

    3. [3]

      PEPLOW M. Cellulosic ethanol fights for life[J]. Nature, 2014,7491:152-153.  

    4. [4]

      LIN Chen, TANG Li. Process and economic analysis of direct hydrogenation of acetic acid to ethanol[J]. Nat Gas Chem Ind, 2013,38(2):60-62.  

    5. [5]

      LI Zhen-yu, HUANG Ge-sheng, YANG Yan-xiang, LI Ding-jie. Analysis and development proposal on fuel grade alcohol production technique process[J]. Mod Chem Ind, 2011,31(8):1-5.  

    6. [6]

      ZHANG Yu-zhuo. Study on the strategy and development countermeasure of China clean energy[J]. Bull Chin Acad Sci, 2014,29(4):429-436.  

    7. [7]

      HU Zong-gui, LI Jing-wei, CHEN Wei-miao, SHAO Shou-yan, ZHU Gui-sheng, DING Yun-jie. Rh-Mn-Li/SiO2 catalyst for CO hydrogenation to C2 oxygenates: Effect of support silanization degree on its catalytic performance[J]. J Fuel Chem Technol, 2015,43(11):1380-1386.  

    8. [8]

      ZHANG Xin-ping, YU Xiao-fang, SUN Fan, GAO Zhen-ming, ZHANG Chun-lei. A two-dimension pseudo-homogeneous dispersion model of ethyl acetate hydrogenation to ethanol[J]. J Fudan Univ (Nat Sci), 2015,54(5):623-629.  

    9. [9]

      RACHMADY W, VANNICE M A. Acetic acid reduction by H2 on bimetallic Pt-Fe catalysts[J]. J Catal, 2002,209(1):87-98. doi: 10.1006/jcat.2002.3623

    10. [10]

      RACHMADY W, VANNICE M A. Acetic acid reduction to acetaldehyde over iron catalysts I.Kinetic behavior[J]. J Catal, 2002,208(1):158-169. doi: 10.1006/jcat.2002.3560

    11. [11]

      RACHMADY W, VANNICE M A. Acetic acid reduction to acetaldehyde over iron catalysts Ⅰ.Characterization by MÖssbaoer spectroscopy, DRIFTS, TPD, and TPR[J]. J Catal, 2002,208(1):170-179. doi: 10.1006/jcat.2002.3561

    12. [12]

      PESTMAN R, KOSTER R M, BOELLAARD E, KRAAN A M V D, PONEC V. Identification of the active sites in the selective hydrogenation of acetic acid to acetaldehyde on iron oxide catalyst[J]. J Catal, 1998,174(2):145-152.  

    13. [13]

      PESTMAN R, KOSTER R M, PIETERSE J A Z, PONEC V. Reactions of carboxylic acids on oxides 1.Selective hydrogenation of acetic acid to acetaldehyde[J]. J Catal, 1997,168(2):255-264. doi: 10.1006/jcat.1997.1623

    14. [14]

      PESTMAN R, KOSTER R M, DUIJNE A V, PIETERSE J A Z, PONEE V. Reactions of carboxylic acids on oxides 2.Bimolecular reaction of aliphatic acids to ketones[J]. J Catal, 1997,168(2):265-272. doi: 10.1006/jcat.1997.1624

    15. [15]

      XU Ye, CAO Su-feng, NING Chun-li, LI Yong-gang, XU Hua-long, ZHANG Chun-lei. The hydrogenation of acetic acid to ethanol over supported Pt-Sn bimetallic catalyst[J]. J Fudan Univ (Nat Sci), 2014,53(2):236-241.  

    16. [16]

      HU Ying-tao, DOU Mei, NAN Sui-fei. Effects of supporter on Pt-Sn Catalytic performance in selective hydrogenation of acetic acid to ethanol[J]. J Chem Eng Chin Univ, 2014,28(6):1281-1285.  

    17. [17]

      ONYESTYÁK G, HARNOS S, KASZONYI A, ŠTOLCOVÁ M, KALLÓ D. Acetic acid hydroconversion to ethanol over novel InNi/Al2O3 catalysts[J]. Catal Commun, 2012,27:159-163. doi: 10.1016/j.catcom.2012.07.021

    18. [18]

      ONYESTYÁK G, HARNOS S, KLšBERT S, ŠTOLCOVÁ M, KASZONYI A, KALLÓ D. Selective reduction of acetic acid to ethanol over novel Cu2In/Al2O3 catalyst[J]. Appl Catal A: Gen, 2013,464-465:313-321. doi: 10.1016/j.apcata.2013.05.042

    19. [19]

      PESTMAN R, DUIJNE A V, PIETERSE J A Z, PONEC V. The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions[J]. J Mol Catal A: Chem, 1995,103(3):175-180. doi: 10.1016/1381-1169(95)00138-7

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(1)
  • Abstract views(1967)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return