Citation: Zheng Zhihui, Gu Feng, Zhao Xiaolin, Wang Youwei, Gao Yanfeng, Liu Jianjun. Progress in Lithium Sulfur Battery Cathode Materials[J]. Chemistry, ;2018, 81(2): 99-108, 181. shu

Progress in Lithium Sulfur Battery Cathode Materials

  • Corresponding author: Liu Jianjun, jliu@mail.sic.ac.cn
  • Received Date: 18 August 2017
    Accepted Date: 6 November 2017

Figures(15)

  • The rapid development of electric vehicle industries gradually increase the demand for secondary battery capacity, so it is urgent to develop new high-capacity lithium batteries. The Li-S battery has a high theoretical specific capacity (1675mAh/g) and a high theoretical specific energy (2600Wh/kg) that enables it to achieve an 3 to 5 times energy density of the lithium ion battery. However, many factors such as the capacity decay and the short cycle life caused by the dissolution and shuttling of the long-chain polysulfides limit practical applications of the lithium-sulfur battery. In this paper, the main strategies and relative progress to solve the "shuttle effect" are reviewed and analyzed from the aspects of surface coating, surface adsorption, and surface catalysis. At last, the developing tendencies of Li-S battery in future are also discussed.
  • 加载中
    1. [1]

      J Wang, J Yang, J Xie et al. Adv. Mater., 2002, 14: 963~965. 

    2. [2]

      H Jiang, Y Fu, Y Hu et al. Small, 2014, 10: 1096~1100. 

    3. [3]

      J Mun, T Yim, J H Park et al. Sci. Rep., 2014, 4: 5802. 

    4. [4]

      J Jeong, H Lee, J Choi et al. Electrochim. Acta, 2015, 154: 149~156. 

    5. [5]

      B Jin, E M Jin, K H Park et al. Electrochem. Commun., 2008, 10: 1537~1540. 

    6. [6]

      X Xiong, Z Wang, G Yan et al. J. Power Sources, 2014, 245: 183~193. 

    7. [7]

      H Chen, J A Dawson, J H Harding. J. Mater. Chem. A, 2014, 2: 7988~7996. 

    8. [8]

      H Jiang, Y Fu, Y Hu et al. Small, 2014, 10: 1096~1100. 

    9. [9]

      S Lee, Y Cho, H K Song et al. Angew. Chem. Int. Ed., 2012, 51: 8748~8752. 

    10. [10]

      S Zhang. NPJ Comput. Mater., 2017, DOI: 10.1038/s41524-017-0009-z.

    11. [11]

      A Urban, D-H Seo, G Ceder. NPJ Comput. Mater., 2016, 2: 16002. 

    12. [12]

      S H Chung, A Manthiram. Adv. Mater., 2014, 26: 7352~7357. 

    13. [13]

      B Jin, J-U Kim, H-B Gu. J. Power Sources, 2003, 117: 148~152. 

    14. [14]

      Y V Mikhaylik, J R Akridge. J. Electrochem. Soc., 2003, 150: A306~A311. 

    15. [15]

      X Ji, L F Nazar. J. Mater. Chem., 2010, 20: 9821~9826. 

    16. [16]

      G Zheng, Y Yang, J J Cha et al. Nano Lett., 2011, 11: 4462~4467. 

    17. [17]

      L Ji, M Rao, H Zheng et al. J. Am. Chem. Soc., 2011, 133: 18522~18525. 

    18. [18]

      Z Xiao, Z Yang, L Zhang et al. ACS Nano, 2017, 11: 8488~8498. 

    19. [19]

      Y V Mikhaylik, J R Akridge. J. Electrochem. Soc., 2004, 151: A1969~A1976. 

    20. [20]

      Kolosnitsyn V, Karaseva E, Ivanov A. Russ. J. Electrochem., 2008, 44: 564~569. 

    21. [21]

      L Wang, T Zhang, S Yang et al. J. Energy. Chem., 2013, 22: 72~77. 

    22. [22]

      Y Diao, K Xie, S Xiong et al. J. Electrochem. Soc., 2012, 159: A1816~A1821. 

    23. [23]

      S Evers, L F Nazar. Chem. Commun., 2012, 48: 1233~1235. 

    24. [24]

      J R Akridge, Y V Mikhaylik, N White. Solid State Ionics, 2004, 175: 243~245. 

    25. [25]

      S Chen, X Huang, H Liu et al. Adv. Energy Mater., 2014, 4: 1079~1098. 

    26. [26]

      G Zheng, Y Yang, J J Cha et al. Nano Lett., 2011, 11: 4462~4467. 

    27. [27]

      Q Li, Z Zhang, K Zhang et al. J. Power Sources, 2014, 256: 137~144. 

    28. [28]

      S Dörfler, M Hagen, H Althues et al. Chem. Commun., 2012, 48: 4097~4099. 

    29. [29]

      J Schuster, G He, B Mandlmeier et al. Angew. Chem., 2012, 124: 3651~3655. 

    30. [30]

      X Yang, L Zhang, F Zhang et al. ACS Nano, 2014, 8: 5208~5215. 

    31. [31]

      C Xu, Y Wu, X Zhao et al. J. Power Sources, 2015, 275: 22~25. 

    32. [32]

      F Liu, J Liang, C Zhang et al. Results Phys., 2017, 7: 250~255. 

    33. [33]

      X Ji, K T Lee, L F Nazar. Nat. Mater., 2009, 8: 500~506.

    34. [34]

      N Jayaprakash, J Shen, S S Moganty et al. Angew. Chem., 2011, 123: 6026~6030. 

    35. [35]

      J Guo, Y Xu, C Wang. Nano Lett., 2011, 11: 4288~4294. 

    36. [36]

      S Xin, L Gu, N H Zhao et al. J. Am. Chem. Soc., 2012, 134: 18510~18513. 

    37. [37]

      Zhang B, Qin X, Li G et al. Energ. Environ. Sci., 2010, 3: 1531~1537. 

    38. [38]

      D W Wang, G Zhou, F Li et al. Phys. Chem. Chem. Phys., 2012, 14: 8703~8710. 

    39. [39]

      Z Li, Y Jiang, L Yuan et al. ACS Nano, 2014, 8: 9295~9303. 

    40. [40]

      Y Zhao, W Wu, J Li et al. Adv. Mater., 2014, 26: 5113~5118. 

    41. [41]

      D S Jung, T H Hwang, J H Lee et al. Nano Lett., 2014, 14: 4418~4425. 

    42. [42]

      X Ye, J Ma, Y S Hu et al. J. Mater. Chem. A, 2016, 4: 775~780. 

    43. [43]

      H J Peng, J Q Huang, M Q Zhao et al. Adv. Funct. Mater., 2014, 24: 2772~2781. 

    44. [44]

      B He, W C Li, C Yang et al. ACS Nano, 2016, 10: 1633~1639. 

    45. [45]

      Y X Yin, S Xin, Y G Guo et al. Angew. Chem. Int. Ed., 2013, 52: 13186~13200. 

    46. [46]

      Z Li, L Yuan, Z Yi et al. Adv. Energy Mater., 2014, 4: 1634~1642. 

    47. [47]

      F Jin, S Xiao, L Lu et al. Nano Lett., 2015, 16: 440~447. 

    48. [48]

      K Mi, Y Jiang, J Feng et al. Adv. Funct. Mater., 2016, 26: 1571~1579. 

    49. [49]

      C Zhang, H B Wu, C Yuan et al. Angew. Chem., 2012, 124: 9730~9733. 

    50. [50]

      Y Fu, A Manthiram. RSC Adv., 2012, 2: 5927~5929. 

    51. [51]

      Y Fu, Y-S Su, A Manthiram. J. Electrochem. Soc., 2012, 159: A1420~A1424. 

    52. [52]

      C Y Chen, H J Peng, T Z Hou et al. Adv. Mater., 2017, 29(23): 1606802. 

    53. [53]

      L Xiao, Y Cao, J Xiao et al. Adv. Mater., 2012, 24: 1176~1181. 

    54. [54]

      F Wu, J Chen, R Chen et al. J. Phys. Chem. C, 2011, 115: 6057~6063. 

    55. [55]

      X Liang, Z Wen, Y Liu et al. J. Power Sources, 2012, 206: 409~413. 

    56. [56]

      S Gope, D Dutta, A J Bhattacharyya. Chem. Select., 2016, 1: 728~735. 

    57. [57]

      Q Yu, Y Lu, T Peng et al. J. Phys. D: Appl. Phys., 2017, 50(11): 115002. 

    58. [58]

      W Qian, Q Gao, H Zhang et al. Electrochim. Acta, 2017, 235: 32~41. 

    59. [59]

      S Moon, J-K Yoo, Y H Jung et al. J. Electrochem. Soc., 2017, 164: A6417~A6421. 

    60. [60]

      J Liu, D G D Galpaya, L Yan et al. Energy. Environ. Sci., 2017, 10: 750~755. 

    61. [61]

      C Wang, H Chen, W Dong et al. Chem. Commun., 2014, 50: 1202~1204. 

    62. [62]

      J Li, B Ding, G Xu et al. Nanoscale, 2013, 5: 5743~5746. 

    63. [63]

      W Xue, Q-B Yan, G Xu et al. Nano Energy, 2017, 38: 12~18.

    64. [64]

      X Liang, L F Nazar. ACS Nano, 2016, 10: 4192~4198. 

    65. [65]

      Z Liang, G Zheng, W Li et al. ACS Nano, 2014, 8: 5249~5256. 

    66. [66]

      Z Li, J Zhang, B Guan et al. Nat. Commun., 2016, 7: 13065. 

    67. [67]

      J Y Hwang, H M Kim, S K Lee et al. Adv. Energy Mater., 2016, 6(1): 1501480. 

    68. [68]

      B Campbell, J Bell, H H Bay et al. Nanoscale, 2015, 7: 7051~7055. 

    69. [69]

      Z W Seh, W Li, J J Cha et al. Nat. Commun., 2013, 4: 2327. 

    70. [70]

      H Cheng, S P Wang, D Tao et al. Funct. Mater. Lett., 2014, 07: 1450020. 

    71. [71]

      L-C Yin, J Liang, G-M Zhou et al. Nano Energy, 2016, 25: 203~210. 

    72. [72]

      Q Zhang, Y Wang, Z W Seh et al. Nano Lett., 2015, 15: 3780~3786. 

    73. [73]

      T A Pascal, K H Wujcik, J Velasco-Velez et al. J. Phys. Chem. Lett., 2014, 5: 1547~1551. 

    74. [74]

      G Zhou, L-C Yin, D-W Wang et al. ACS Nano, 2013, 7: 5367~5375. 

    75. [75]

      X Liu, J Q Huang, Q Zhang et al. Adv. Mater., 2017, 29(20): 1601759. 

    76. [76]

      Q Pang, X Liang, C Y Kwok et al. Nat. Energy, 2016, 1: 16132. 

    77. [77]

      F Sun, J Wang, D Long et al. J. Mater. Chem. A, 2013, 1: 13283~13289. 

    78. [78]

      Q Li, Z Zhang, K Zhang et al. J. Solid State Electrochem., 2013, 17: 2959~2965. 

    79. [79]

      Y Zhang, L Wang, A Zhang et al. Solid State Ionics, 2010, 181: 835~838. 

    80. [80]

      Y Zhang, X Wu, H Feng et al. Int J. Hydrogen Energy, 2009, 34: 1556~1559. 

    81. [81]

      L Z Tan, F Zheng, S M Young et al. NPJ Comput. Mater., 2016, 2: 16026. 

    82. [82]

      Y Shan, Z Zheng, J Liu et al. NPJ Comput. Mater., 2017, DOI: 10.1038/s41524-017-0008-0.

    83. [83]

      M-S Song, S-C Han, H-S Kim et al. J Electrochem. Soc., 2004, 151: A791~A795. 

    84. [84]

      L Q Lu, L J Lu, Y Wang. J. Mater. Chem. A, 2013, 1: 9173~9181. 

    85. [85]

      X Wang, Z Wang, L Chen. J. Power Sources, 2013, 242: 65~69. 

    86. [86]

      X Yao, N Huang, F Han et al. Adv. Energy Mater., 2017, 7(17): 1602923. 

    87. [87]

      S Evers, T Yim, L F Nazar. J. Phys Chem. C, 2012, 116: 19653~19658. 

    88. [88]

      X Tao, J Wang, Z Ying et al. Nano Lett., 2014, 14: 5288~5294. 

    89. [89]

      M Yu, W Yuan, C Li et al. J. Mater. Chem. A, 2014, 2: 7360~7366. 

    90. [90]

      Q Fan, W Liu, Z Weng et al. J. Am. Chem. Soc., 2015, 137: 12946~12953. 

    91. [91]

      K Han, J Shen, S Hao et al. ChemSusChem., 2014, 7: 2545~2553. 

    92. [92]

      H J Peng, T Z Hou, Q Zhang et al. Adv. Mater. Interf., 2014, 1(7): 1400227. 

    93. [93]

      K A See, Y-S Jun, J A Gerbec et al. ACS Appl. Mater. Interf., 2014, 6: 10908~10916. 

    94. [94]

      J Lee, S-K Park, Y Piao. Electrochim. Acta, 2016, 222: 1345~1353. 

    95. [95]

      Y Tan, Z Zheng, S Huang et al. J. Mater. Chem. A, 2017, 5: 8360~8366. 

    96. [96]

      K Mi, S Chen, B Xi et al. Adv. Funct. Mater., 2017, 27(1): 1604265. 

    97. [97]

      G Zhou, E Paek, G S Hwang et al. Nat. Commun., 2015, 6: 7760. 

    98. [98]

      Q Pang, J Tang, H Huang et al. Adv. Mater., 2015, 27: 6021~6028. 

    99. [99]

      S Yuan, J L Bao, L Wang et al. Adv. Energy Mater., 2016, 6(5): 1501733. 

    100. [100]

      Z Wang, Y Dong, H Li et al. Nat. Commun., 2014, 5: 5002. 

    101. [101]

      G C Yang, S Q Shi, J H Yang et al. J. Mater. Chem. A, 2015, 3: 8865~8869. 

    102. [102]

      X Liang, C Hart, Q Pang et al. Nat. Commun., 2015, 6: 5682. 

    103. [103]

      M S Faber, R Dziedzic, M A Lukowski et al. J. Am. Chem. Soc., 2014, 136: 10053~10061. 

    104. [104]

      Z Yuan, H J Peng, T Z Hou et al. Nano Lett., 2016, 16: 519~527. 

    105. [105]

      E M Fernández, P G Moses, A Toftelund et al. Angew. Chem. Int. Ed., 2008, 47: 4683~4686. 

    106. [106]

      H G Füchtbauer, A K Tuxen, P G Moses et al. Phys. Chem. Chem. Phys., 2013, 15: 15971~15980. 

    107. [107]

      J Park, B C Yu, J S Park et al. Adv. Energy Mater., 2017, 7(11): 1602567. 

  • 加载中
    1. [1]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    5. [5]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    7. [7]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    10. [10]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    11. [11]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

Metrics
  • PDF Downloads(258)
  • Abstract views(15823)
  • HTML views(4406)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return